# Etymologie, Etimología, Étymologie, Etimologia, Etymology US Vereinigte Staaten von Amerika, Estados Unidos de América, États-Unis d'Amérique, Stati Uniti d'America, United States of America Zahlen, Número, Nombre, Numero, Number Zahlentheorie, Teoría de números, Théorie des nombres, Teoria dei numeri, Number Theory Algebraische Zahlentheorie, Teoría de números algebraicos, Théorie algébrique des nombres, Teoria algebrica dei numeri, Algebraic number theory

## A

### artlebedev A short history of telephone numbers

(E?)(L?) http://www.artlebedev.com/mandership/91/

Artemy Lebedev
§ 91. A short history of telephone numbers
June 18, 2002

The Scottish inventor Alexander Graham Bell is credited with speaking the first words by telephone on March 10, 1876: Mr. Watson Come hereI want to see you. To call his assistant sitting next door, Bell didnt have to dial a number: there were only two phone sets in the world at that time.
...
How they did it

Americans who were to encounter the problem of 7-digit numbers sooner that any other nation, found a mnemonic solution to the problem (it was generally believed back then that 7-digit numbers were hard to memorize): the first three digits were replaced with letters some word started with. For technical reasons no telephone number in the US started with "1". For historical reasons "zero" was always used to call the operator. As a result, any American telephone number could start with any figure but "1" and "0".
...

Erstellt: 2011-12

## C

### creditreport Number Crunchers

(E?)(L?) http://www.creditreport.org/outrageous-number-crunchers/

• Chord Calculator: Choose a root chord and a few other specifics, and this tool will happily spill out every possible guitar/bass fingering for that chordevery mathematically possible fingering, so some fret diagrams may look awkward to say the least.
• The Inflation Calculator: Oh, inflation. The escalating worthlessness of money has been a prime mover in the financial world since money was invented. With computers we can judge historical inflation with pinpoint accuracy and predict future trends. This calculator lets you see historical inflation rates for the dollaror a lot of dollars, depending on what you input.
• Metabolism Calculator: Computers have solved so many other problems, surely they can tackle weight loss? Well if nothing else, they can apply some math to your metabolism. Discover your metabolic rate using this simple tool and see how many calories you burn, or wish you could burn, each day.
• MortgageCalculator.net: This calculator may seem tame compared to some of the zanier options, but few are more useful to American families who want to buy homes. Taking out a mortgage is often the most important financial step people take. Calculators like this distill data down to simple information on monthly payments.
• Number Factorizer: This site allows you to quickly and efficiently compute prime factors. If prime factors are not your goal, there is a list of just about every other calculator you could want, from graphing to gamma functions.
• Random.org: Random number generators are largely self-explanatory. Of course, a programmer would be quick to assert that no generator is truly random, but given a range of integers some can come pretty close. Use this generator to pick your range and produce all the randomized results you want! There are also multiple alternative generators to choose from on the site.
• Splitwise: This is an app/site that helps you split bills. Here computers help out with the quintessential roommate problem, divvying up expenses with mathematical precision and sending email reminders so people have no excuse. Follow utilities, food bills, cleaning expenses and more.
• Tools for Noobs: Number to Words Spelling Tool: Silly humans with your words! Numbers are a much purer form of expression. But if you have to have it spelled out for you, this tool turns beautiful numbers into shoddy word equivalents for communication purposes.
• Word Count Tool: Most programs have easy word count options. But if you have a chunk of text and no easy way to find out how many words it has, paste it into this calculator. The computer will deal with the messy work of counting up all those words and give you an easy answer.
• Zero Footprint Youth Calculator: This site is a carbon footprint calculator for kids! It may seem strange, but this tool is a fun way to show kids how their daily lives produce carbon dioxide and how they can set goals to lower their environmental impact. Now if only there was a grown-up version for corporations

Erstellt: 2012-10

## I

### javascriptsource - NP Number Pronunciator

Dieses Tool ist alleine schon interessant wegen der Benennungen hoher Zehnerpotenzen. Oder kennen sie die folgenden englischen Zahlenbezeichnungen:

(E?)(L?) http://www.javascriptsource.com/miscellaneous/number-pronunciator.html

Enter a number and this script will write it out in plain English. Your number can be up to 303 digits long.

Number Pronunciator
Please enter a number and I will try to pronounce it.
Your number can be up to 303 digits long.
Submitted by: Sydney Wedding Video / DVD

Free JavaScripts provided
by The JavaScript Source

## M

### mightynumber Mighty Number

Zahlen von 0 bis 999999999999.

(E?)(L?) http://www.mightynumber.com/

Search For a Number:
• Number List
• Popular Numbers
A search engine for numbers.

Als Beispiel:

(E?)(L?) http://www.mightynumber.com/number/986014014014.html

• 986014014014 in English is nine hundred eighty-six billion fourteen million fourteen thousand fourteen
• 986014014014 in German is neunhundertsechsundachtzig Milliarden vierzehn Millionen vierzehntausendvierzehn
• 986014014014 in French is neuf cent quatre-vingt-six milliards quatorze millions quatorze mille quatorze
• 986014014014 in Spanish is novecientos ochenta y seis mil catorce millones catorce mil catorce
• 986014014014 in Swedish is niohundraåttiosexmiljardfjortonmiljonfjortontusenfjorton
• The square root of 986014014014 is 992982.38353659
• The base 10 logarithm of 986014014014 is 11.993883087523

Erstellt: 2012-08

## N

### number (W3)

(E?)(L?) http://www.wikipedia.org/wiki/number

### numbergossip Number Gossip

(E?)(L1) http://numbergossip.com/

Enter a number and I'll tell you everything you wanted to know about it but were afraid to ask.

(E?)(L1) http://numbergossip.com/list

Number Gossip Properties

| abundant | amicable | apocalyptic power | aspiring | automorphic | cake | Carmichael | Catalan | composite | compositorial | cube | deficient | even | evil | factorial | | Google | happy | hungry | lazy caterer | lucky | Mersenne | Mersenne prime | narcissistic | odd | odious | | perfect | power of 2 | powerful | practical | prime | primorial | pronic | repunit | Smith | sociable | square | square-free | tetrahedral | triangular | twin | Ulam | undulating | untouchable | vampire | weird

Ein Beispiel: "60":

Unique Properties of 60

• The smallest non-abelian simple group (the alternating group on 5 elements) has order 60, in particular 60 is the smallest composite which is the order of a simple group
• 60 is the smallest product of the sides of a Pythagorean triangle
Common Properties of 60
• Abundant
• Composite
• Even
• Evil
• Practical

Erstellt: 2011-07

### numberworld.org Numberworld

(E?)(L?) http://www.numberworld.org/

• Algorithms
• Version History
• Versions
Blogs
• Transit of Venus across the sun - 2012.
• A peak into y-cruncher v0.6.1.
World Record Computations
• 10 Trillion Digits of Pi
• 5 Trillion Digits of Pi ?Announcement (English)
• Announcement (Chinese)
• Announcement (Japanese)
• 500 Billion Digits of e
• 14.9 Billion Digits the Euler-Mascheroni Constant
Mathematical Constants: Billions of Digits
• Sqrt(2)
• Golden Ratio
• e
• Pi
• Log(2)
• Log(10)
• Zeta(3) - Apery's Constant
• Catalan's Constant
• Euler-Mascheroni Constant
Other
• http://www.numberworld.org/programs/
• http://www.numberworld.org/nagisa_runs/
• computations.html
• error-detection and correction.html
• About - Alexander J. Yee
• http://www.numberworld.org/euler116m.html
• http://www.numberworld.org/constants.html
• http://www.numberworld.org/notes.html

Erstellt: 2014-10

## O

### oeis.org Online Encyclopedia of Integer Sequences - OEIS

(E?)(L?) http://www.ams.org/notices/200308/comm-sloane.pdf

N. J. A. Sloane: The On-Line Encyclopedia of Integer Sequences

This article gives a brief introduction to the "On-Line Encyclopedia of Integer Sequences" (or "OEIS"). The OEIS is a database of nearly 90,000 sequences of integers, arranged lexicographically. The entry for a sequence lists the initial terms (50 to 100, if available), a description, formulae, programs to generate the sequence, references, links to relevant web pages, and other information.
...

(E?)(L?) http://www.oeis.org/

(E?)(L?) http://oeis.org/wiki/Welcome

Contents
• 1 Welcome to The On-Line Encyclopedia of Integer Sequences (OEIS) Wiki
• 2 Some Famous Sequences
• 3 General Information About OEIS
• 4 Description of OEIS entries (or, What is the Next Term?)
• 5 OEIS: Brief History
• 6 OEIS: The Movie
• 7 Arrangement of Sequences in Database
• 8 Format Used in Replies From the Database
• 9 Index
• 10 Sequences Which Agree For a Long Time
• 12 Compressed Versions
• 13 Contributing a New Sequence, Comment or More Terms
• 14 OEIS Search Bar
• 15 Email Addresses, Getting in Touch With Authors
• 16 Sequences in Classic Books
• 17 Citations
• 18 Referencing the OEIS
• 19 URLs
• 20 Referencing a Particular Sequence
• 21 Policy on Searching the Database
• 22 Acknowledgments
• 23 Related OEIS Pages
• 24 Links to Other Sites
• 25 OEIS Mentioned in WolframAlpha Timeline
• 26 Awards, Press Clippings
• 26.1 Thumbnails

(E?)(L?) http://oeis.org/wiki/Index_to_OEIS

Index to OEIS

(E?)(L?) http://oeis.org/wiki/Index_to_OEIS:_Section_Aa

• a(a(n)) = 2n and similar sequences, sequences related to:
• a(a(n)) = 2n and similar sequences: (1) A000027 A002516 A002517 A002518 A003605 A007378 A007379 A054786 A054787 A054788 A054789 A054790
• a(a(n)) = 2n and similar sequences: (2) A079000 A079253 A079905 A080588 A080589 A080591 A080596 A080637
• a(a(n)) = 2n and similar sequences: see also: (1) A000201 A001462 A007479 A038752 A038755 A038756 A038757 A054048 A054049 A054791 A054792 A054793
• a(n+1)=a(n)^2 + ..., recurrences of the form :
• a(n+1)=a(n)^2 + ..., recurrences of the form, (1) A000058 A000289 A000324 A001042 A001056 A001146 A013589 A001510 A001543 A001544 A001566
• a(n+1)=a(n)^2 + ..., recurrences of the form, (2) A001696 A001697 A001699 A001999 A002065 A000215 A000283 A003010 A003095 A003096 A003423
• a(n+1)=a(n)^2 + ..., recurrences of the form, (3) A003487 A004019 A005267 A007018 A014253 A028300 A051179 A056207 A058181 A058182 A062000
• a(n+1)=a(n)^2 + ..., recurrences of the form, (4) A063573 A065035 A067686 A076725 A086851 A092500 A092501 A098152 A099729 A100523 A100528
• a(n+1)=a(n)^2 + ..., recurrences of the form, (5) A110360 A110368 A110383 A113848 A114793 A114950 A117805 A118623 A125046 A126023 A135927
• a(n+1)=a(n)^2 + ..., recurrences of the form, (6) A143760 A143761 A143762 A143763 A143764 A143765 A143766 A153059 A153060 A153061 A153062
• a(n+1)=a(n)^2 + ..., recurrences of the form, (7) A172028 A174864 A186750
• A(n, d), maximal size of binary code of length n and minimal distance d, sequences related to :
• A(n,3), maximal size of binary code of length n and minimal distance 3: A005864*
• A(n,4), maximal size of binary code of length n and minimal distance 4: A005864*
• A(n,4,3): A001839
• A(n,4,4): A001843
• A(n,4,5): A169763
• A(n,5), maximal size of binary code of length n and minimal distance 5: A005865*
• A(n,6), maximal size of binary code of length n and minimal distance 6: A005865*
• A(n,7), maximal size of binary code of length n and minimal distance 7: A005866*
• A(n,8), maximal size of binary code of length n and minimal distance 8: A005866*
• A(n,d,w) , maximal size of binary code of length n, constant weight w and minimal distance d, sequences related to :
• A(n,d,w) sequences (1): A001839 A001843 A004035 A004036 A004037 A004038 A004039 A004043 A004047 A004052 A004056 A004067
• A(n,d,w) sequences (2): A005851 A005852 A005853 A005854 A005855 A005856 A005857 A005858 A005859 A005860 A005861 A005862
• A(n,d,w) sequences (3): A005863
• a/b + b/c + c/a = n: A072716
• A2 lattice, also known as hexagonal or triangular lattice, sequences related to :
• A2 lattice, coordination sequence for: A008458*
• A2 lattice, crystal ball sequence for: A003215*
• A2 lattice, numbers represented by: A003136*
• A2 lattice, polygons on: A036418*
• A2 lattice, see also (1):: A005881, A003050, A003051, A006861, A006777, A006775, A003289, A006836, A003291, A006742, A006738, A006803, A005882, A006807
• A2 lattice, see also (2):: A006984, A007239, A006778, A006739, A006776, A006813, A006809, A006735, A005550, A006740, A006736, A005552, A003488, A004016
• A2 lattice, see also (3):: A002898, A003202, A003290, A002933, A002919, A002920, A001334, A006818, A007274, A007275, A005553, A005399, A006741, A006737
• A2 lattice, see also (4):: A005400, A003197, A007207, A002911, A001335, A007200, A005549, A005551, A007201, A192208
• A2 lattice, sublattices of: A003051*, A003050*, A054384*
• A2 lattice, theta series of: A004016*, A035019*
• A2 lattice, walks on: A001334*
• A3 lattice: see f.c.c. lattice
• A3* lattice: see b.c.c. lattice
• A4 lattice, sequences related to :
• A4 lattice, coordination sequence for: A008383*
• A4 lattice, crystal ball sequence for: A008384*
• A4 lattice, theta sequence for: A008444*

(E?)(L?) http://oeis.org/wiki/Index_to_OEIS:_Section_Ab

• abelian numbers: A051532
• absolute primes: see primes, absolute
• abundance: see abundancy
• abundancy , sequences related to :
• abundancy: A033880*, A033879, A005579, A005347, A005580, A033881, A033882
• abundant numbers: A002093, A002182, A005101*, A091191
• abundant numbers: consecutive: A094268
• abundant numbers: odd: A005231*, A006038, A064001
• acetylene: A000642, A005957
• Ackermann function, sequences related to :
• Ackermann function: A001695, A046859, A014221
• Ackermann function: see also sequences which grow too rapidly to have their own entries
• acyclic digraphs, see digraphs, acyclic
• add 1, multiply by 1, add 2, multiply by 2, etc., sequences related to :
• add 1, multiply by 1, add 2, multiply by 2, etc.: A019463, A019460, A019462, A019461, A082448
• add m then reverse digits, sequences related to :
• add m then reverse digits: A007396, A003608, A007397, A007398, A007399
• addition chains, sequences related to :
• addition chains: A003064* A003065* A003313* A005766 A008057 A008928 A010787 A079300
• additive bases , sequences related to :
• additive bases: A004133, A004135, A004136
• additive sequences sequences related to :
• additive sequences (00): definition: a(n*m) = a(n) + a(m) if GCD(n,m) = 1
• additive sequences (01): completely additive A001222, A001414, A007814, A007949, A048675, A056239, A067666, A076649,
• additive sequences (03): A001221, A005063-A005085, A005087-A005091, A005094, A008472, A008474,
• additive sequences (04): A008475, A008476, A046660, A052331, A055631, A056169, A056170, A059841,
• additive sequences (05): A064372, A064415, A066328, A079978, A080256, A081403, A087207, A090885,
• additive sequences (06): A106490, A106492, A113178, A113222, A115357, A121262, A086275
• Aho-Sloane paper: see entry for a(n+1)=a(n)^2 + ...
• Airey's converging factor: A001662
• Aitken's array: A011971*

(E?)(L?) http://oeis.org/wiki/Index_to_OEIS:_Section_Al

• alcohols, sequences related to :
• alcohols: A000598 A000599 A000600 A002094 A005955 A005956
• Alcuin's sequence: A005044*
• Alekseyev's problem: see doubling substrings
• algebras , sequences related to :
• algebras, Jordan: A001776
• algebras: (1) A000929 A001330 A001331 A006448 A007154 A007156 A007157 A007158 A007159 A014610 A046001 A052249
• algebras: (2) A052250 A052253
• algorithms, sequences related to :
• algorithms: A005825 A005826 A005827 A006457 A006458 A006459 A006929 A030547 A032426 A049476 A055633
• aliquot divisors, see aliquot parts
• aliquot parts (or aliquot divisors): A032741*, A001065* (sum of)
• aliquot parts, sequences related to :
• aliquot sequence (or trajectory) for n, length of: A098007*, A098008*, A003023, A044050*, A007906, A003062
• aliquot trajectories for certain initial values: (1) A008885 A008886 A008887 A008888 A008889 A008890 A008891 A008892 A014360 A014361 A074907 A014362
• aliquot trajectories for certain initial values: (2) A045477 A014363 A014364 A014365 A074906
• alkanes: A000602*
• alkyls, sequences related to :
• alkyls: A000598 A000639 A000642 A000645 A000646 A000647 A000648 A000649 A000650 A005957 A010372 A022014 A036996
• all-0's sequence, sequences related to :
• all-0's sequence: A000004*
• all-1's sequence: A000012*
• all-2's sequence: A007395*
• all-3's sequence: A010701*
• all-4's sequence: A010709*
• all-5's sequence: A010716*
• all-6's sequence: A010722*
• all-7's sequence: A010727*
• all-8's sequence: A010731*
• all-9's sequence: A010734*
• almost primes, sequences related to :
• almost primes: (0) a k-almost prime has k prime factors, counted with multiplicity
• almost primes: (1) A001358, A014612, A014613, A014614, A046306, A046308, A046310, A046312, A046314, A069272, A069273, A069274
• almost primes: (2) A069275, A069276, A069277, A069278, A069279, A069280, A069281; table A078840
• almost primes: gaps, by increasing Omega: A065516, A114403, A114404, A114405, A114406, A114407, A114408
• almost-natural numbers, sequences related to :
• almost-natural numbers: A007376*
• almost-natural numbers: for decimations see A127050 A127353 A127414 A127508 A127584 A127734 A127794 A127950 A128178 A128211 A128359 A128423 A128475 A128881
• alphabetical order, sequences related to :
• alphabetical order, numbers in: A000052*
• alternating bit sets: A002487
• alternating bit sum: A065359
• alternating group A_n, sequences related to :
• alternating group A_n, A001710*
• alternating group A_n, degrees of irreducible representations of, for n = 5 through 13: A003860, A003861, A003862, A003863, A003864, A003865, A003866, A003867, A003868
• alternating permutations: see permutations, alternating
• alternating sign matrices: see matrices, alternating sign

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Am

• amicable numbers, sequences related to :
• amicable numbers: A063990*, A063991 (unitary)
• amicable pairs, augmented: A007992*, A015630*
• amicable pairs, unitary: A002952*, A002953*
• amicable pairs: A002025*, A002046*
• ammonium: A000633
• AND(x,y), sequences related to :
• AND(x,y): A004198*
• AND: see also: A003985 A005756 A006581 A007461 A033458 A046951 A050600 A050601 A050602 A051122 A053623
• Andrews-Mills-Robbins-Rumsey numbers: A005130
• animals , sequences related to :
• animals, square: A000105
• animals: (1) A001931 A005773 A005774 A005775 A006193 A006194 A006801 A006861 A007193 A007194 A007195 A007196
• animals: (2) A007197 A007198 A007199 A010374 A011789 A011790 A011791 A011792 A033565 A036908 A038151 A038168
• animals: (3) A038169 A038170 A038171 A038172 A038173 A038174 A038180 A038181 A038386 A039700 A039740 A039741
• animals: (4) A039742 A053022 A055898 A055907 A055919
• anti-divisor: A066272* (for definition), A130799 (initial values)
• antichains, sequences related to :
• antichains: A000372*, A007363*
• antichains: see also (1) A003182 A006360 A006361 A006362 A007153 A007852 A007853 A014466 A032263 A051303 A051304 A051305
• antichains: see also (2) A051306 A051307 A056932 A056933 A056934 A056935 A056936 A056937 A056939 A056940 A056941
• antidiagonals, sequences related to :
• antidiagonals, definition by example: A003987, A060736, A060734
• antidivisor: A066272* (for definition), A130799 (initial values)
• antimagic squares: A050257

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Ap

• AP's of primes, see primes, in arithmetic progressions
• Apery numbers, sequences related to :
• Apery numbers: A002736*, A005258*, A005259*, A005429*, A005430*
• Apocalyptic powers: A007356
• Apollonian ball packings, sequences related to :
• Apollonian ball packings: A045506
• Apollonian circle packings: A042944, A042945, A042946, A045673, A045864, A045963
• approximate squaring: see under x*ceiling(x), iterating and x*floor(x), iterating
• ApSimon mints problem: A007673
• Ap\'{e}ry numbers: see Apery numbers

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Ar

• arborescences: A003120
• arccos(x) and other inverse trig functions, sequences related to :
• arccos(x): see Pi/2-arcsin(x), A055786 / A002595
• arccosec(x): see arcsin(1/x), A055786 / A002595
• arccosech(x): see arcsinh(1/x), A055786 / A002595
• arccosh(x): A052468/A052469
• arccotangent reducible numbers: A002312
• arcos and arccos are both used in the OEIS!
• arcosh and arccosh are both used in the OEIS!
• arcsec(x): see Pi/2-arcsin(1/x), A055786 / A002595
• arcsech(x): see arccosh(1/x), A052468 / A052469
• arcsin(x): A055786/A002595, A006228
• arcsinh(x): A055786/A002595
• arctangent numbers, triangle of: A008309*
• areas: A005386
• ARIBAS: A062916
• arithmetic mean of 1st n terms is an integer ( 1): A000012 A000326 A001564 A001792 A004767 A005408 A005449 A005843 A016813 A019444 A049450 A057711
• arithmetic mean of 1st n terms is an integer ( 2): A076540 A081038 A090942 A092930 A092929 A094588 A104249 A136391 A138879 A157142 A171769
• arithmetic mean of 1st n terms is an integer ( 3): A000255 A002104 A099035 A094258
• arithmetic means: A007340
• arithmetic numbers: A003601*, A090944
• arithmetic progressions of primes, see primes, in arithmetic progressions
• arithmetic progressions with fixed prime signature, see primes, in arithmetic progressions
• arithmetic progressions: A003407, A005115, A005836, A005837, A005838, A005839
• Armstrong numbers, sequences related to :
• Armstrong numbers: A005188*
• Armstrong numbers: in other bases: A010343, A010344, A010345, A010346, A010347, A010348, A010349, A010350, A010351, A010352, A010353, A010354
• Aronson's sequence, sequences related to :
• Aronson's sequence, generalized: A079000
• Aronson's sequence, generalized: see also sequences of the a(a(n)) = 2n family
• Aronson's sequence, numerical analogues of: ( 1) A000201 A003151 A003605 A004956 A005224 A007378 A010906 A014132 A026351 A045412 A061891 A064437
• Aronson's sequence, numerical analogues of: ( 2) A073074 A079000* A079250 A079251 A079252 A079253 A079254 A079255 A079256 A079257 A079258 A079259
• Aronson's sequence, numerical analogues of: ( 3) A079313 A079325 A079351 A079358 A079905 A079946 A079948 A080029 A080030 A080031 A080032 A080033
• Aronson's sequence, numerical analogues of: ( 4) A080034 A080036 A080037 A080081 A080199 A080353 A080455 A080456 A080457 A080458 A080460 A080574
• Aronson's sequence, numerical analogues of: ( 5) A080578 A080579 A080580 A080588 A080589 A080590 A080591 A080600 A080633 A080637 A080639 A080640
• Aronson's sequence, numerical analogues of: ( 6) A080641 A080644 A080645 A080646 A080652 A080653 A080667 A080707 A080708 A080710 A080711 A080712
• Aronson's sequence, numerical analogues of: ( 7) A080714 A080720 A080722 A080723 A080724 A080725 A080726 A080727 A080728 A080731 A080745 A080746
• Aronson's sequence, numerical analogues of: ( 8) A080752 A080753 A080754 A080759 A080760 A080780 A080900 A080901 A080903 A080904 A080939 A080949
• Aronson's sequence, numerical analogues of: ( 9) A081023 A081024 A081260 A081746 A091387 A091388 A091389 A091390 A091391
• Aronson's sequence: A005224*, A080520 (French version)
• arrays , sequences used for indexing, sequences related to :
• arrays, indexing: A073189*
• arrays, sequences used for indexing: (1) A000194 A002024 A002260 A002262 A003056 A003057 A003059 A004736 A025581 A048760 A053186 A055086
• arrays, sequences used for indexing: (2) A055087 A071797 A073188 A073189*
• arrays: A003169, A007073, A007074, A007072
• Artin's conjecture or constant, sequences related to :
• Artin's conjecture : A001122
• Artin's conjecture, Artin's constants: A005596* A048296* A065414 A065417 A066517
• ascent sequences: Total number of ascent sequences is given by A022493*. Number of ascent sequences avoiding 001 (and others) is A000079; avoiding 102 (and others) is A007051; 101 is A000108; 000 is A202058; 100 is A202059; 110 is A202060; 120 is A202061; 201 is A202062; 210 is A108304; 0123 is A080937; 0021 is A007317.
• association schemes, sequences related to :
• association schemes: A057495*, A057498 (noncommutative), A057499 (primitive)
• asubb: see A121295, A121296, A121297, A121623 and other dungeon sequences, also A122618
• asymmetric channel, codes for: A010101
• asymmetric sequences: A002842
• asymptotic expansions, sequences related to :
• asymptotic expansions: A001163 A001164 A002073 A002074 A002304 A002305 A002514 A006572 A006953
• atomic species: A005226, A005227, A007650
• atomic weights: A007656*
• audioactive decay: see "say what you see"
• automata, see cellular automata
• automorphic numbers , sequences related to :
• automorphic numbers: (1) A003226 A007185 A016090 A018247 A018248 A033819 A074194 A074250 A074321 A074330 A074332
• automorphic numbers: (2) A030984 A030985 A030986 A030987 A030988 A030989 A030990 A030991 A030992 A030993 A030994
• automorphic numbers: (3) A030995 A035383 A046883 A046884 A082576
• A_2 lattice: see A2 lattice
• A_3 lattice: see f.c.c. lattice
• A_4 lattice: see A4 lattice
• a_b: see A121295, A121296, A121297, A121623, A122618
• A_n lattice: coordination sequence for: see A005901
• A_n sequence, primes in: A111157

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Ba

• B-trees, sequences related to :
• B-trees: A014535*, A037026, A058521, A058518, A058519, A058520
• b.c.c. lattice , sequences related to :
• b.c.c. lattice, animals on: A007195 A007196 A007197 A038170 A038171 A038180 A038181 A038386
• b.c.c. lattice, coordination sequence for: A005897*
• b.c.c. lattice, partition function: A001406
• b.c.c. lattice, polygons on: A001667
• b.c.c. lattice, series expansions for: (1) A002167 A002168 A002914 A002917 A002925 A003194 A003206 A003210 A003492 A003497 A007218 A006805
• b.c.c. lattice, series expansions for: (2) A006811 A006838 A007218 A010559 A010560 A010564 A047711
• b.c.c. lattice, theta series of: A004013* A004014* A004024 A004025 A005869 A008664 A008665
• b.c.c. lattice, walks on: A001666, A001667, A002903
• Baby Monster simple group: A001378*
• backgammon: A055100
• Baker-Campbell-Hausdorff expansion: A005489
• balanced numbers: A020492
• Balancing weights: A002838
• ballot numbers , sequences related to :
• ballot numbers: A003121*
• balls into boxes, sequences related to :
• balls into boxes: (1) A000110 A001700 A001861 A005337 A005338 A005339 A005340 A007318 A019575 A019576 A019577 A019578
• balls into boxes: (2) A019579 A019580 A019581 A027710
• balls on the lawn: see tennis ball problem
• Barker sequences (or Barker codes): A011758, A011759, A091704
• Barnes-Wall lattices, sequences related to :
• Barnes-Wall lattices, groups of: A014115*, A014116*
• Barnes-Wall lattices, in 2^2 dim., theta series of: A004011
• Barnes-Wall lattices, in 2^3 dim., theta series of: A004009
• Barnes-Wall lattices, in 2^4 dim., theta series of: A008409
• Barnes-Wall lattices, in 2^5 dim., theta series of: A004670
• Barnes-Wall lattices, in 2^6 dim., theta series of: A103936
• Barnes-Wall lattices, in 2^7 dim., theta series of: A100004
• Barnes-Wall lattices, kissing numbers of: A006088*
• Barnes-Wall lattices, odd: A014711*
• Barnes-Wall lattices, vectors of twice minimum: A110972, A110973
• barriers for omega(n): A005236
• barycentric subdivisions: A002050, A005461, A005462, A005463, A005464
• base -2: A039724*, A005351*, A005352
• base, factorial, A007623
• base, fractional , sequences related to :
• base, fractional, definition: A024661*
• base, fractional: defined in A024630
• baseball: see Ruth-Aaron numbers, Maris-McGwire numbers
• Batcher parallel sort: A006282
• Baxter permutations: A001181*, A001183*, A001185*
• bcc lattice: see b.c.c. lattice

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Be

• Beans-Don't-Talk: A005694, A005695, A005696, A005697, A005698
• Beanstalk: A005692, A005693
• beastly numbers: A051003, A046720, A131645, A186086, A138563
• Beatty sequences sequences related to :
• Beatty sequences : for a constant c, the two Beatty sequences are the main sequence floor(n*c) and the complementary sequence floor(n*c') where c' = c/(c-1))
• Beatty sequences for: (n+1/2)/2 (A038707), (n+1/2)/4 (A038709), Feigenbaum's constant (A038123), Brun's constant (A038124)
• Beatty sequences for: (sqrt(5)+5)/2 (A003231), (1 + sqrt 3)/2 (A003511), sqrt 3 + 2 (A003512), (3+Sqrt)/2 (A054406)
• Beatty sequences for: 1+1/Pi (A059531), 1+Pi (A059532), 1+Catalan's constant (A059533), 1+1/Catalan's constant (A059534)
• Beatty sequences for: 1+gamma A001620 (A059555), 1+1/gamma (A059556), 1+gamma^2, (A059557), 1+1/gamma^2 (A059558), 1-ln(1/gamma), (A059559), 1-1/ln(1/gamma) (A059560)
• Beatty sequences for: 3/4, 2/5, 3/5, 2/7, 3/7, 4/7, 5/7, 3/8, 5/8, 5/13, 8/13, 8/21, 13/21, 7/19, 11/30 (A057353-A057367)
• Beatty sequences for: 3^(1/3) (A059539), 3^(1/3)/(3^(1/3)-1) (A059540), 1+ln(2) (A059541), 1+1/ln(2) (A059542), ln(3) (A059543), ln(3)/(ln(3)-1) (A059544)
• Beatty sequences for: e (A022843), e/(e-1) (A054385), 1/(e-2) (A000062), 1/e (A032634), e-1 (A000210), e+1 (A000572), (e+1)/e (A006594), e^(1/e) (A037087)
• Beatty sequences for: e^gamma (A059565), e^gamma/(e^gamma-1) (A059566), 1-ln(ln(2)) (A059567), 1-1/ln(ln(2)) (A059568)
• Beatty sequences for: e^pi (A038152), pi^e (A038153), 2^sqrt(2) (A038127), Euler's gamma (A038128), 2^(1/3) (A038129)
• Beatty sequences for: Gamma(1/3) (A059551), Gamma(1/3)/(Gamma(1/3)-1) (A059552), Gamma(2/3) (A059553), Gamma(2/3)/(Gamma(2/3)-1) (A059554)
• Beatty sequences for: ln(10) (A059545), ln(10)/(ln(10)-1) (A059546), 1+1/ln(3) (A059547), 1+ln(3) (A059548), 1+1/ln(10) (A059549), 1+ln(10) (A059550)
• Beatty sequences for: ln(Pi) (A059561), ln(Pi)/(ln(Pi)-1) (A059562), e+1/e (A059563), (e^2+1)/(e^2-e+1) (A059564)
• Beatty sequences for: Pi (A022844), Pi/(Pi-1) (A054386), 1/Pi (A032615), pi^2 (A037085), sqrt(pi) (A037086), 2*pi (A038130), sqrt(2 pi) (A038126)
• Beatty sequences for: Pi^2/6, or zeta(2) (A059535), zeta(2)/(zeta(2)-1) (A059536), zeta(3) (A059537), zeta(3)/(zeta(3)-1) (A059538)
• Beatty sequences for: sqrt(2) (A001951), 2 + sqrt(2) (A001952), 1 + 1/sqrt(11) (A001955), 1 + sqrt(11) (A001956)
• Beatty sequences for: sqrt(3) (A022838), sqrt(5) (A022839), sqrt(6) (A022840), sqrt(7) (A022841), sqrt(8) (A022842)
• Beatty sequences for: sqrt(5) - 1 (A001961), sqrt(5) + 3 (A001962), 1+sqrt(2) (A003151), 1/(2-sqrt(2)) (A003152)
• Beatty sequences for: tau (A000201), tau^2 (A001950), tau^3 (A004976), tau^(4+n) (n=0..16) (A004919+n)
• Beatty sequences: references about: see especially A000201
• Beatty sequences: see also (1) A014245 A014246 A022803 A022804 A022805 A022806 A022879 A022880 A023541 A023542 A045671 A045672
• Beatty sequences: see also (2) A045681 A045682 A045749 A045750 A045774 A045775
• Beethoven: A001491, A054245, A123456
• beginning with t: A006092, A005224
• Belgian numbers: A106039, A106439, A106518, A106596, A106631, A106792, A107014, A107018, A107032, A107043, A107062, A107070.
• Bell numbers, sequences related to :
• Bell numbers: A000110*
• bell ringing , sequences related to
• bell ringing: (1) A090277 A090278 A090279 A090280 A090281 A090282 A090283 A090284
• bell ringing: (2) A057112 A060112 A060135
• Bell's formula: A002575, A002576
• bemirps: A048895
• bending: see folding
• Benford numbers: A004002*
• Benny, Jack: A056064
• bent functions: A004491, A099090
• benzene: A000639
• Berlekamp's switching game: A005311*
• Bernoulli numbers , sequences related to :
• Bernoulli numbers B_n: A027641**/A027642*. A027641 has all the references, links and formulae
• Bernoulli numbers B_{2n}: A000367*/A002445*, but see especially A027641
• Bernoulli numbers (n+1)B_n: A050925/A050932, A002427/A006955
• Bernoulli numbers, generalized: A006568, A006569, A002678, A002679
• Bernoulli numbers, higher order: A001904, A001905
• Bernoulli numbers, irregularity index of primes: A061576, A091888, A007703, A000928, A091887, A073276, A073277, A060975
• Bernoulli numbers, numerators and their factorizations: (1) A000367 = numerators, A000928 = irregular primes, A001067 A001896 A002427 A002431 A002443 A002657 A007703 A017329 A027641 A027643
• Bernoulli numbers, numerators and their factorizations: (2) A027645 A027647 A029762 A029764 A033470 A033474 A035078 A035112 A043295 A043303 A046988 A050925
• Bernoulli numbers, numerators and their factorizations: (3) A053382 A060054 A067778 A068206 A068399 A068528 A069040 A069044 A070192 A070193 A071020 A071772
• Bernoulli numbers, numerators and their factorizations: (4) A073276 A075178 A076547 A076549 A079294 = number of prime factors, A083687 A084217 A085092 A085737 A089170 A089644 A089655
• Bernoulli numbers, numerators and their factorizations: (5) A090177 A090179 A090495 A090496 A090629 A090789 A090790 A090791 A090793 A090798 A090800 A090817
• Bernoulli numbers, numerators and their factorizations: (6) A090818 A090823 A090825 A090865 A090943 = squareful numerators, A090947 = largest prime factor, A091216 A091888 A092132 A092133 A092194 A092195
• Bernoulli numbers, numerators and their factorizations: (7) A092221 A092222 A092223 A092224 A092225 A092226 A092227 A092228 A092229 A092230 A092231 A092291
• Bernoulli numbers, numerators and their factorizations: (8) A090997 A090987
• Bernoulli numbers, poly-Bernouli numbers: A027643 A027644 A027645 A027646 A027647 A027648 A027649 A027650 A027651
• Bernoulli numbers, see also (1): A000146 A000182 A000928 A001469 A001896 A001947 A002105 A002208 A002316 A002431 A002443 A002444
• Bernoulli numbers, see also (2): A002657 A002790 A002882 A003245 A003264 A003272 A003326 A003414 A003457 A004193 A006863 A006953
• Bernoulli numbers, see also (3): A006954 A014509 A020527 A020528 A020529 A029762 A029763 A029764 A029765 A030076 A033469 A033470
• Bernoulli numbers, see also (4): A033471 A033473 A033474 A033475 A035077 A035078 A035112 A045979 A046094 A046968 A047680 A047681
• Bernoulli numbers, see also (5): A047682 A047683 A047872 A051222 A051225 A051226 A051227 A051228 A051229 A051230
• Bernoulli numbers, triangles that generate: A051714/A051715, A085737/A085738
• Bernoulli polynomials, sequences related to :
• Bernoulli polynomials, coefficients of: A053382*/A053383*, A048998*, A048999*
• Bernoulli polynomials, see also A001898 A002558 A020527 A020528 A020529 A020543 A020544 A020545 A020546
• Bernoulli twin numbers: A051716/A051717
• Bernstein squares: A097871
• Berstel sequence: A007420*
• Bertrand's Postulate, sequences related to :
• Bertrand's Postulate: A035250*, A036378, A006992, A051501
• Bessel function or Bessel polynomial , sequences related to :
• Bessel function or Bessel polynomial: (1) A000134 A000155 A000167 A000175 A000249 A000275 A000331 A001880
• Bessel function or Bessel polynomial: (2) A001881 A002190 A002506 A006040 A006041 A014401 A039699 A046960 A046961 A046962 A046963
• Bessel function or Bessel polynomial: (3) A051148 A051149
• Bessel functions: J_0: A002454, J_1: A002474, J_2: A002506, J_3: A014401, J_4: A061403, J_5: A061404, J_6: A061405, J_7: A061407, J_9: A061440 J_10: A061441
• Bessel numbers: A006789, A111924, A100861
• Bessel polynomial, coefficients of: A001497, A001498
• Bessel polynomial, defined: A001515, A001497, A001498
• Bessel polynomial, values of: (1) A001515, A001517, A001518, A065919, A001514, A065920, A065921, A065922, A006199, A065707, A000806, A002119
• Bessel polynomial, values of: (2) A065923, A001516, A065944, A065945, A065946, A065947, A065948, A065949, A065950, A065951
• Bessel triangle: A001497*, A000369, A001498, A011801, A013988, A004747, A049403, A065931, A065943
• betrothed numbers: A003502*, A003503*, A005276*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Bi

• bicoverings: A002718, A002719
• bigomega(n), number of primes dividing n (counted with repetition): A001222
• binary codes, maximal size of constant weight, see A(n,d,w)
• binary codes, maximal size of, see A(n, d)
• binary codes: see codes, binary
• binary digits: see binary expansion
• binary entropy: A003314
• binary expansion of n , sequences related to :
• binary expansion of n: A000120* (weight), A000788*, A000069*, A001969*, A023416*, A059015*, A007088*, A070939*
• binary expansion of n: produces a prime: A036952, A065720, A156059
• binary expansion of n: see also (1) A005536, A003159, A006995, A006364, A054868, A070940, A070941, A070943, A001511, A029837, A037800
• binary matrices: see matrices, binary
• binary numbers: A007088*
• binary order of n: A029837, A070939
• binary partitions: see partitions, binary
• Binary sequences:: A006840
• binary strings, A007088*, A007931
• binary vectors, A007088*, A007931
• binary vectors, avoiding certain patterns: A000045, A006156, A006498, A040000, A062257, A062258, A062259, A121907, A079500, A164387, A188580, A188696, A188697, A188714, A188765
• binary vectors, grandchildren of: A057606, A057607, A000124
• Binary vectors:: A005253, A003440
• binary weight of n, sequences related to :
• binary weight of n: A000120*
• binomial coefficient, sequences related to :
• binomial coefficients, A000012* = binomial(n,0), A000027* = binomial(n,1), A000217* = binomial(n,2), A000292* = binomial(n,3), etc.
• binomial coefficients, central: A000984*, A001405*, A001700
• Binomial coefficients, LCM of:: A002944
• Binomial coefficients, occurrences of n as:: A003016
• binomial coefficients, triangle of: A007318*
• binomial coefficients: (1):: A005733, A005735, A005809, A001791, A005810, A000332, A002054, A000389, A002694, A003516
• binomial coefficients: (2):: A000580, A002696, A000581, A000582, A001287, A001288
• binomial coefficients: sums:: A001527, A003161, A003162
• Binomial moments:: A000910
• binomial transform, sequences related to :
• binomial transform: see Transforms file
• binomial transforms:: A007442, A000371, A007476, A007443, A007317, A005331, A007405, A007472, A004211, A005572, A005494, A004212, A005021, A004213, A005011, A005327, A005014
• binomial(n,2): A000217*
• binomial(n,3): A000292*
• binomial(n,4): A000332*
• binomial(n,k): binomial coefficient n-choose-k (see A007318)
• bipartite (1):: A007083, A007029, A000291, A006823, A006612, A002774, A007085, A005142, A000412, A004100
• bipartite (2):: A001832, A005335, A005336, A007084, A002762, A002766, A002763, A006824, A006825, A007028
• bipartite (3):: A002767, A000465, A002768, A002764, A000491, A002765, A002755, A002756, A002757, A002758, A002759
• bipartite , sequences related to :
• biprimes: A001358
• birthday paradox: A014088 A033810 A050255 A050256 A051008 A064619
• bisections, sequences related to :
• bisections: A001519, A002478, A001906, A002878, A002287, A002286
• Bishops problem, sequences related to :
• Bishops problem:: A005633, A005631, A005635, A002465*, A005634, A005632
• bits: see binary expansion
• bitwise exclusive OR, see under XOR

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Bl

• blobs: A003168 A007161 A007166 A048173
• blocks: see graphs, nonseparable

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Bo

• Board of Directors Problem: A005254, A037354
• Bode's law: A003461*, A061654
• body-centered cubic lattice: see b.c.c. lattice
• Bokmal: A014656
• Bokmal: see also Index entries for sequences related to number of letters in n
• bond percolation, sequences related to :
• bond percolation:: A006727, A006728, A006730, A006738, A006729, A006735, A006736, A006737
• Boolean functions, sequences related to :
• Boolean functions, balanced: A000721
• Boolean functions, cascade-realizable: A005608, A005609, A005610, A005611, A005613, A005619, A005749
• Boolean functions, Dedekind's problem: see Boolean functions, monotone (Dedekind's problem)
• Boolean functions, fanout-free: A005737, A005736, A005742, A005738, A005740, A005612, A005615, A005617, A005743, A005741
• Boolean functions, inequivalent, under action of various groups (1): A000133, A000214, A000231, A000585, A000614, A001289, A003180, A008842, A011782, A028401, A028402, A028403
• Boolean functions, inequivalent, under action of various groups (2): A028404, A028405, A028406, A028407, A028409, A028410, A028411, A049461, A051460, A051502, A053040, A057132
• Boolean functions, invertible: A001038, A000656, A000653, A000722, A000654, A000725, A000724, A000723, A001537, A000652, A128904
• Boolean functions, irreducible: A000616*
• Boolean functions, Knuth's tables. D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79, has three useful lists of Boolean functions, which are as follows. Table 3: A001146, A001146, A000372, A001206, A102897, A109457, A000609, A000079, A102449. Table 4: A003180, A057132, A003182, A008840, A193675, A109458, A109455, A109460. Table 5: A000370, A001531, A001529, A001532, A000616.
• Boolean functions, minimal numbers of elements needed to realize any: A056287*, A057241*, A058759*
• Boolean functions, monotone (Dedekind's problem): A000372*, A003182*, A007153*, A001206*, A014466*
• Boolean functions, monotone (Dedekind's problem): see also A016269, A047707, A051112, A051113, A051114, A051115, A051116, A051117, A051118
• Boolean functions, nondegenerate: A000371*, A000618, A003181, A001528
• Boolean functions, see also (1): A000157, A000370, A000612, A000613, A001087, A005530, A005581, A005744, A005756, A018926, A036240, A037267
• Boolean functions, see also (2): A037843, A051185, A051355, A051360, A051361, A051368, A051375, A051376, A051381, A056778
• Boolean functions, self-complementary: A000610*, A001320*, A053037
• Boolean functions, self-dual monotone: A001206*
• Boolean functions, self-dual: A001531*, A006688*, A002080, A008840, A008841
• Boolean functions, triangle of numbers of: A039754, A051486*, A053874*, A052265*, A054724*, A022619*, A059090
• Boolean functions, unate: A003183
• Boolean lattices: A005493
• Boolean polynomials: see polynomials, Boolean
• Boolian: the correct spelling is Boolean
• boson strings, sequences related to :
• boson strings: A005290 A005291 A005292 A005293 A005294 A005307 A005308
• Boubaker polynomials: A135929, A138034, A160242, A162180
• bouquets: A005431
• boustrophedon transform, sequences related to :
• boustrophedon transform, definition see Millar-Sloane-Young paper
• boustrophedon transform, in Maple, see Transforms file
• boustrophedon transform, of various sequences: (0) A000111*, A000182*, A000364*, A000667*
• boustrophedon transform, of various sequences: (1) A000660 A000674 A000687 A000697 A000718 A000732 A000733 A000734 A000736 A000737 A000738
• boustrophedon transform, of various sequences: (2) A000744 A000745 A000746 A000747 A000751 A000752 A000753 A000754 A000756 A000764 A029885
• boustrophedon transform, variations on: (1) A059216, A058217, A059219, A059220, A059502, A059503, A059505, A059506, A059507, A059508, A059509, A059226
• boustrophedon transform, variations on: (2) A059227, A059228, A059229, A059234, A059235, A058237
• boustrophedon transform, variations on: (3) A059510 - A059512, A027994
• bowling: A060853

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Br

• bracelets , sequences related to :
• bracelets , A000029*, A005232, A005513-A005516, A007123, A032279-A032288, A073020, A078925
• bracelets, 3-colored, A005654, A005656, A027671*, A032240, A032294
• bracelets, 4-colored, A032241, A032275*, A032295
• bracelets, 5-colored, A032242, A032276*, A032296
• bracelets, aperiodic, A001371*, A032294-A032296, A045628, A045633
• bracelets, asymmetric, A032239*, A032240-A032242
• bracelets, balanced, A005648*, A006079, A006840, A045628, A045633
• bracelets, complements are equivalent, A000011*, A006080, A006840, A045633, A053656, A066313-A066316
• bracelets, identity, see bracelets, asymmetric
• bracelets, triangle, A052307*, A052308, A052309, A052310
• bracket function: A000748, A000749, A000750, A001659 , A006090
• brackets, ways to arrange: see parentheses, ways to arrange
• braids, sequences related to :
• braids: A054761*, A000071, A054480, A007988, A007990, A007991, A007993, A007994, A007995
• Braille: A079399, A072283
• Bravais lattices: A004030*
• Brazilian Portuguese: see also Index entries for sequences related to number of letters in n
• bricks , sequences related to :
• bricks: A000472 A003697 A006291 A006292 A006293 A031173 A031174 A031175
• bridge hands, sorting: A065603
• brilliant numbers: A078972*, A085647
• Brun's constant: A065421, A005597, A038124
• Buffon's needle: A060294*
• building numbers from other numbers and the operations of addition, subtraction, etc: see under four 4's problem
• bull (in graph theory): see A079577
• Burnside's problem in group theory: A051576, A079682, A079683
• Busy Beaver problem , sequences related to :
• Busy Beaver problem: A028444*, A004147*, A060843*, A052200
• button, sewing on a, A192314*, A192332, A191563
• B_2 sequences , sequences related to :
• B_2 sequences: A005282, A010672, A011185, A025582
• B_n lattice: coordination sequence for: see A022145

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Ca

• C(n,2): A000217*
• C(n,3): A000292*
• C(n,4): A000332*
• C(n,k): binomial coefficient n-choose-k (see A007318)
• cab-taxi numbers: A047696
• cabtaxi numbers: see cab-taxi numbers
• cacti , sequences related to :
• cacti, 2-ary: A054357*, A054358
• cacti, 3-ary: A052393*, A054422
• cacti, 4-ary: A052394*, A052395
• cacti, 5-ary: A054363*, A054364
• cacti, 6-ary: A054366*, A054367
• cacti, 7-ary: A054369*, A054370
• cacti, plane, 3-gonal: A054423
• cacti, plane, 4-gonal: A054362
• cacti, plane, 5-gonal: A054365
• cacti, plane, 6-gonal: A054368
• cacti, plane, 7-gonal: A054371
• cacti, polygonal: A035082*, A035088*
• cacti, rooted, polygonal: A035085*, A035086, A035087*
• cacti, rooted, triangular: A002067, A003080*, A032035, A034940*, A091481, A091486, A091488
• cacti, rooted, with bridges: A000237*, A035351*, A035352, A035353, A035357
• cacti, triangular: A003081*, A034941*, A091485, A091487, A091489
• cacti, with bridges: A000083* (unlabeled), A000314* (labeled), A035356
• Cahen's constant: A006279, A006280, A006281
• cake numbers: A000125*
• calculator display: A006942* A010371* A018846 A018847 A018849 A038136 A053701 A063720
• Cald's sequence: A006509*
• calendar, sequences related to :
• calendar, dates of days in: A008684*
• calendar, days in year: A011763*
• calendar, days per century: A011770, A011771
• calendar, lengths of months: A008685*
• calendar: see also A001356, A031139, A051121, A119406, A135795, A143994, A141039, A143995, A141287
• campanology: see bell ringing
• canalizing Boolean functions, sequences related to :
• canalizing Boolean functions: A102449, A109460, A109461, A109462
• cannonball problem: see A001032
• Cantor set, sequences related to :
• Cantor set: A054591 A170951 A170952 A110081 A121153 A170944 A135666 A088370
• Cantor set: see also A005823 A170830 A170853 A102525 A137178 A076481 A055246 A055247 A028491 A113246 A134583
• Cantor's sigma function: A055068
• card arranging: A006063
• card games: A051921
• card matching, sequences related to :
• card matching: (1) A000279 A000316 A000459 A000489 A000535 A059056 A059057 A059058 A059059 A059060 A059061 A059062
• card matching: (2) A059063 A059064 A059065 A059066 A059067 A059068 A059069 A059070 A059071 A059072 A059073 A059074
• card sorting: see sorting
• Carmichael numbers , sequences related to :
• Carmichael numbers: A002997*
• Carmichael numbers: see also (1) A002322 A006931 A006972 A029553 A029554 A029555 A029556 A029557 A029558 A029559 A029560 A029561
• Carmichael numbers: see also (2) A029562 A029563 A029564 A029565 A029566 A029567 A029568 A029569 A029570 A029590 A029591 A033502
• Carmichael's lambda function: A002322*, A011773
• carry propagation: A190866, A190868
• carryless arithmetic base b, sequences related to :
• carryless arithmetic base 10, Boolean version: A169912, A169913, A169914
• carryless arithmetic base 10, digital root version: A169908, A169910, A169911 (primes)
• carryless arithmetic base 10, mod 10 version: A059729, A061909, A129967 & A169889 (squares), A168294, A168541, A169884, A169885 (cubes), A169886, A169890 (triangular numbers), A169973 (partitions)
• carryless arithmetic base 10, mod 10 version: A169891, A169892, A169893, A169896, A169897, A169898, A169899 (divisor functions)
• carryless arithmetic base 10, mod 10 version: A169894 (addition table), A059692 (multiplication table)
• carryless arithmetic base 10, mod 10 version: A169904, A169905, A169906, A169907, A003893
• carryless arithmetic base 10, mod 10 version: even numbers: A004520, A014263
• carryless arithmetic base 10, mod 10 version: negative numbers: A055120
• carryless arithmetic base 10, mod 10 version: primes: A169887, A169903, A163396, A169984, A143712, A144162
• carryless arithmetic base 10, mod 10 version: see also A000689, A001148, A169916, A169917, A169918
• carryless arithmetic base 10, mod 9 version: A169821, A169909, A029898
• carryless arithmetic base 2: A000695 (squares), A048720 and A091257 (multiplication table), A014580 (primes), A091242 (composites)
• carryless arithmetic base 3: A169999
• carryless arithmetic base 4: A170985
• carryless arithmetic base 5: A170986
• carryless arithmetic base 6: A170987
• carryless arithmetic base 7: A170988
• carryless arithmetic base 8: A170989
• carryless arithmetic base 9: A170990
• cascades of gates, sequences related to :
• cascades of gates: A005608 A005609 A005610 A005611 A005613 A005616 A005618 A005619 A005739 A005749
• casting out nines (digital root): A010888
• Catalan , sequences related to :
• Catalan constant: A006752, A014538
• Catalan numbers : A000108*
• Catalan numbers, 3-dimensional: A005789*
• Catalan numbers, generalized: (1) A001003 A004148 A004149 A006629 A006630 A006631 A006632 A006633 A006634 A006635 A006636 A006637
• Catalan numbers, generalized: (2) A023421 A023422 A023423 A023425 A023426 A023427 A023428 A023429 A023430 A023431 A023432 A023433
• Catalan numbers, generalized: (3) A025242 A025748 A025749 A025750 A025751 A025752 A025753 A025754 A025755 A025756 A025757 A025758
• Catalan numbers, generalized: (4) A025759 A025760 A025761 A025762 A025763 A053991
• Catalan numbers: see also (1) A005807, A007317, A000957, A005568, A003046, A003047, A007595, A003150, A002996, A001453
• Catalan triangle: Adamson's generalization: A116925
• Catalan's conjecture: A002760*, A023057, A023055, A001597
• Catalan: A051785
• Catalan: see also Index entries for sequences related to number of letters in n
• categories, sequences related to :
• categories, connected: A125698, A125699, A125700, A125702
• categories, strongly connected: [sequences to be added]
• categories: A125696, A125697, A125701
• Cauchy numbers: A006232/A006233, A002657/A002790
• Cayley's mistake: A000022*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Ce

• Cebychev is spelled Chebyshev throughout
• cellular automata , sequences related to :
• cellular automata (01): A001317 A006447 A006977 A006978 A010760 A018189 A019332 A019539 A019540 A019541 A019542 A019543
• cellular automata (02): A034384 A038183 A038184 A038185 A047999 A048705 A048706 A048709 A048710 A048883 A051023
• cellular automata (03): A056219 A060546 A060547 A060548 A060549 A060550 A060551 A060552 A060553 A063467 A070886 A070887
• cellular automata (04): A070909 A070950 A071022 A071023 A071024 A071025 A071026 A071027 A071028 A071029 A071030 A071031
• cellular automata (05): A071032 A071033 A071034 A071035 A071036 A071037 A071038 A071039 A071040 A071041 A071042 A071043
• cellular automata (06): A071044 A071045 A071046 A071047 A071048 A071049 A071050 A071051 A071052 A071053 A071054 A071055
• cellular automata (07): A051023
• cellular automata, 2-dimensional ( 1): A147562, A160117, A160118, A160410. A160411 [more to be added here]
• cellular automata, 3-dimensional: A160119, A160379, A161340, A160428
• cellular automata, Rule 022: A071029
• cellular automata, Rule 028: A070909
• cellular automata, Rule 030: A070950*, A051023, A070951, A070952*, A151929, A092539, A110266, A1102676, A094603, A094604, A094605, A074890, A110240, A100053
• cellular automata, Rule 041: A095951
• cellular automata, Rule 050: A071028
• cellular automata, Rule 054: A071030, A118108, A118109
• cellular automata, Rule 058: A071028
• cellular automata, Rule 060: A047999, A001317, A138276, A075438
• cellular automata, Rule 062: A071031
• cellular automata, Rule 070: A071022
• cellular automata, Rule 078: A071023
• cellular automata, Rule 086: A071032, A074890
• cellular automata, Rule 090: A070886*, A001316, A001317, A038183, A048705, A048706, A048709, A048710, A048711, A048713, A048757, A071042, A080263, A086839, A138276
• cellular automata, Rule 092: A071024
• cellular automata, Rule 094: A071033, A118101, A118102
• cellular automata, Rule 102: A047999, A075439, A117998
• cellular automata, Rule 110: A070887*, A071048, A071048 , A075437, A095950, A117999
• cellular automata, Rule 114: A071028
• cellular automata, Rule 118: A071034
• cellular automata, Rule 122: A071028
• cellular automata, Rule 124: A071025
• cellular automata, Rule 126: A071035
• cellular automata, Rule 150: A071036, A118110, A038184, A038185, A138276, A138277, A048705, A048706, A048709, A048710, A048711, A048712, A048714
• cellular automata, Rule 156: A070909
• cellular automata, Rule 158: A071037, A118171, A118172
• cellular automata, Rule 178: A071028
• cellular automata, Rule 182: A071038
• cellular automata, Rule 186: A071028
• cellular automata, Rule 188: A071026, A118173, A118174
• cellular automata, Rule 190: A071039, A118111
• cellular automata, Rule 198: A071022
• cellular automata, Rule 214: A071040
• cellular automata, Rule 220: A118175
• cellular automata, Rule 225: A078176
• cellular automata, Rule 230: A071027
• cellular automata, Rule 242: A071028
• cellular automata, Rule 246: A071041
• cellular automata, Rule 250: A071028, A002450
• cellular automata, Rule 252: A074890
• cellular automata, sequences related to, see also primes, transformed by cellular automata
• centered polytope numbers, sequences related to :
• centered cube numbers, higher-dimensional (1): A008514, A008515, A008516, A036085, A036086, A036087, A036088 A036089, A036090, A036091
• centered cube numbers, higher-dimensional (2): A036092, A036093, A036094, A036095, A036096, A036097, A036098, A036099, A036100, A036101, A036102
• centered cube numbers: A005898*
• centered cuboctahedral numbers: A005902
• centered dodecahedral numbers: A005904
• centered hexagonal numbers : A003215
• centered icosahedral numbers: A005902
• centered orthoplex numbers: A001846
• centered polygonal numbers (k*n^2-k*n+2)/2, for k = 1 and 2: A000124, A002061
• centered polygonal numbers (k*n^2-k*n+2)/2, for k = 3 through 14 sides: A005448, A001844, A005891, A003215, A069099, A016754, A060544, A062786, A069125, A003154, A069126, A069127
• centered polygonal numbers (k*n^2-k*n+2)/2, for k = 15 through 20 sides: A069128, A069129, A069130, A069131, A069132, A069133
• centered polygonal numbers: A000124, A002061
• centered square numbers : A001844
• centered tetrahedral numbers: A005894*, A008498, A008499, A008500, A008501, A008502, A008503, A008504, A008505, A008506
• centered triangular numbers : A005448
• central binomial coefficients: see binomial coefficients, central
• central factorial numbers , sequences related to :
• central factorial numbers, triangle of: A008955, A008956, A008957, A008958, A036969
• central factorial numbers: A000596 A000597 A001819 A001820 A001821 A001823 A001824 A001825 A002453 A002454 A002455 A049033
• central polygonal numbers, see centered polygonal numbers
• central trinomial coefficients: A002426*
• centuries: see calendar

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Ch

• Chacon sequences: A049320*, A049321*
• Chains:: A007047, A005603, A005602
• challenge problems, see sequences that need extending
• Champernowne , sequences related to :
• Champernowne constant: A033307*, A030167*, A058068, A058069, A007376, A033308
• Champernowne sequence: A030190*, A030302
• change ringing: see bell ringing
• characteristic functions , sequences related to :
• characteristic functions (000): char fn where where name of "chi_n=1"
• characteristic functions (001): chi chi_n=1 chi_n=0
• characteristic functions (002): A000007 A000004 A000027 all 0
• characteristic functions (003): A000012 A001477 [empty] natural numbers
• characteristic functions (004): A000035 A005408 A005843 odd numbers
• characteristic functions (005): A003849 A003622 A022342
• characteristic functions (006): A004641 A086377 A081477
• characteristic functions (007): A005171 A018252 A000040 nonprimes
• characteristic functions (008): A005369 A002378 A078358 pronic numbers
• characteristic functions (009): A005614 A022342 A003622
• characteristic functions (010): A008966 A005117 A013929 squarefree
• characteristic functions (011): A010051 A000040 A018252 primes
• characteristic functions (012): A010052 A000290 A000037 squares
• characteristic functions (013): A010054 A000217 A014132 triangular numbers
• characteristic functions (014): A010055 A000961 A024619 prime powers
• characteristic functions (016): A010057 A000578 A007412 cubes
• characteristic functions (017): A010058 A000108 A092459 Catalan numbers
• characteristic functions (018): A010059 A001969 A000069 evil numbers
• characteristic functions (019): A010060 A000069 A001969 odious numbers
• characteristic functions (020): A011655 A001651 A008585 not mult 3
• characteristic functions (021): A012245 A000142 A063992 factorials
• characteristic functions (022): A014306 A145397 A000292 m(m+1)(m+2)6
• characteristic functions (023): A014578 A007417 A145204
• characteristic functions (024): A020987 A022155 NA
• characteristic functions (025): A023531 A000096 A007401 m(m+3)2
• characteristic functions (026): A023533 A000292 A145397 m(m+1)(m+2)6
• characteristic functions (027): A033683 A104777 NA odd squares mod 3 > 0
• characteristic functions (028): A033684 A135556 NA squares mod 3 > 0
• characteristic functions (029): A035263 A003159 A036554
• characteristic functions (030): A036987 A000225 NA
• characteristic functions (031): A038189 A091067 A091072
• characteristic functions (033): A057427 A000027 A000004 positive numbers
• characteristic functions (034): A059448 A059009 A059010
• characteristic functions (035): A059841 A005843 A005408 even numbers
• characteristic functions (036): A063524 A000012 A087156 all 1
• characteristic functions (037): A064911 A001358 A100959 semiprimes
• characteristic functions (038): A065043 A028260 A026424 even number of prime factors
• characteristic functions (039): A065202 A065201 A065200
• characteristic functions (040): A065333 A003586 A059485 3-smooth
• characteristic functions (041): A066247 A002808 A008578 composite numbers
• characteristic functions (042): A066829 A026424 A028260 odd number of prime factors
• characteristic functions (043): A072401 A004215 NA of the form 4^m*(8k+7)
• characteristic functions (044): A075802 A001597 A007916 perfect powers
• characteristic functions (045): A075897 A048645 NA
• characteristic functions (046): A079260 A002144 A137409 primes of form 4n+1
• characteristic functions (047): A079261 A002145 A145395 primes of form 4n+3
• characteristic functions (048): A079978 A008585 A001651 mult 3
• characteristic functions (049): A079979 A008588 A047253 mult 6
• characteristic functions (050): A079998 A008587 A047201 mult 5
• characteristic functions (051): A080110 A080112 A080113
• characteristic functions (052): A080111 A080113 A080112
• characteristic functions (053): A080116 A014486 NA
• characteristic functions (054): A080339 A008578 A002808 {1} union {primes}
• characteristic functions (055): A080545 A006005 A065090 {1} union {odd primes}
• characteristic functions (057): A082784 A008589 A047304 mult 7
• characteristic functions (058): A083187 A002379 NA [ 3^n 2^n ]
• characteristic functions (059): A083923 A057548 NA
• characteristic functions (060): A083924 A072795 NA
• characteristic functions (061): A085357 A003714 A004780 Fibbinary numbers
• characteristic functions (062): A086299 A002473 A068191 7-smooth
• characteristic functions (063): A088517 A001463 NA
• characteristic functions (064): A089011 A005763 NA Weyl
• characteristic functions (065): A091225 A014580 NA
• characteristic functions (066): A091247 A091242 NA
• characteristic functions (067): A092248 A030230 A030231 even number of distinct prime factors
• characteristic functions (068): A093709 A028982 A028983 squares or twice squares
• characteristic functions (069): A093719 A047273 A047235 (mod 2)^(mod 3)
• characteristic functions (070): A095076 A020899 A095096
• characteristic functions (071): A095111 A095096 A020899
• characteristic functions (072): A098108 A016754 NA
• characteristic functions (073): A099104 A066680 NA badly sieved numbers
• characteristic functions (074): A099395 A007283 NA
• characteristic functions (075): A101040 NA NA not more than 2 prime factors
• characteristic functions (076): A101605 A014612 NA exactly 3 prime factors
• characteristic functions (077): A101637 A014613 NA exactly 4 prime factors
• characteristic functions (078): A102460 A000032 NA Lucas numbers
• characteristic functions (079): A103673 A103676 A103677 (factorial)
• characteristic functions (080): A103674 A103678 A103679 (factorial)
• characteristic functions (081): A103675 A103680 A103681 (factorial)
• characteristic functions (082): A105349 A000129 NA Pell numbers
• characteristic functions (083): A107078 A013929 A005117 non unitary divisors
• characteristic functions (084): A112526 A001694 A052485 powerful numbers
• characteristic functions (085): A114986 A000201 A001950
• characteristic functions (086): A118952 A118957 A118956
• characteristic functions (087): A121262 A008586 A042968 mult 4
• characteristic functions (088): A122255 A122254 A048136
• characteristic functions (089): A122257 A005109 A122259 Pierpont primes
• characteristic functions (090): A122261 A122260 NA mult. closure of Pierpont primes
• characteristic functions (092): A123927 A119885 NA tau=Lucas
• characteristic functions (093): A130638 A005237 NA tau(n+1)=tau(n)
• characteristic functions (094): A132138 A002977 A132142
• characteristic functions (095): A133010 NA NA
• characteristic functions (096): A133011 NA NA
• characteristic functions (097): A133100 A085787 NA gen. heptagonal numbers
• characteristic functions (098): A133101 A057569 NA
• characteristic functions (099): A133872 A042948 A042964 congruent 0 or 1 mod 4
• characteristic functions (101): A137794 A073491 A073492 no prime gaps in fact
• characteristic functions (102): A139689 NA NA Chen
• characteristic functions (103): A141260 A141259 NA
• characteristic functions (104): A143731 A024619 A000961 more than 1 prime factor
• characteristic functions (105): A145649 A000959 A050505 lucky numbers
• characteristic functions (106): A156660 A005384 A138887 Sophie Germain primes
• characteristic functions (107): A156659 A005385 A156657 safe primes
• characteristic functions (108): A079559 A005187 A055938 range of A005187
• characteristic functions (109): A151774 A018900 A161989 numbers with binary weight 2
• characteristic functions (110): A167392 A000041 A167376 partition numbers
• characteristic functions (111): A167393 A000009 A167377 range of A000009
• characteristic functions (112): A168046 A052382 A011540 zerofree numbers
• characteristic functions (113): A166486 A042968 A008586 not a multiple of 4
• characteristic functions (114): A011558 A047201 A008587 coprime to 5
• characteristic functions (115): A097325 A047253 A008588 not a multiple of 6
• characteristic functions (116): A109720 A047304 A008589 coprime to 7
• characteristic functions (117): A168181 A047592 A008590 not a multiple of 8
• characteristic functions (118): A168182 A168183 A008591 not a multiple of 9
• characteristic functions (119): A168184 A067251 A008592 not a multiple of 10
• characteristic functions (120): A145568 A160542 A008593 coprime to 11
• characteristic functions (121): A168185 A168186 A008594 not a multiple of 12
• characteristic functions (122): A054521 A169581 A169581
• characters of groups: A005368
• Chebycheff is spelled Chebyshev throughout
• Chebychev is spelled Chebyshev throughout
• Chebyshev function theta(n): A035158, A057872, A083535
• Chebyshev polynomials , sequences related to :
• Chebyshev polynomials of the first kind (T- or C- polynomials) ( 1): A001792 A001793 A001794 A002698 A005583 A005584 A006974 A006975 A006976 A007701 A008310 A008311
• Chebyshev polynomials of the first kind (T- or C- polynomials) ( 2): A020537 A020538 A020539 A039991 A053120 A001105 A002415 A002492 A005585 A040977 A050486 A008314
• Chebyshev polynomials of the first kind (T- or C- polynomials) ( 3): A053347 A054322 A054323 A054324 A054325 A054326 A054327 A054328 A054329 A054330 A054331 A054332
• Chebyshev polynomials of the first kind (T- or C- polynomials) ( 4): A054333 A054334 A001653 A070997 A001091 A072256 A001075 A001541 A005248 A003501 A056854 A056918
• Chebyshev polynomials of the first kind (T- or C- polynomials) ( 5): A057076 A001079 A023038 A011943 A023039 A001081 A001085 A077235 A077236 A077237 A077238 A077239
• Chebyshev polynomials of the first kind (T- or C- polynomials) ( 6): A077240 A077242 A077244 A077246 A077248 A077250 A077409 A077411 A001570 A001835 A056771 A077417
• Chebyshev polynomials of the first kind (T- or C- polynomials) ( 7): A077420 A077422 A077424 A077428 A078356 A078363 A078365 A078367 A078369 A000129 A001333 A001076
• Chebyshev polynomials of the first kind (T- or C- polynomials) ( 8): A001077 A005667 A005668 A041025 A078986
• Chebyshev polynomials of the first kind (T- or C- polynomials) ( 9): A090733 A090248 A090251 A001519 A097308-A097316 A097725-A097742 A097765-A097784 A097826-A097835
• Chebyshev polynomials of the first kind (T- or C- polynomials) (10): A090729 A090731 A097837 A097838 A097840-A097845 A098244 A098246 A098247
• Chebyshev polynomials of the first kind (T- or C- polynomials) (11): A098249 A098250 A098252 A098253 A098255 A098256 A098258 A098259 A098261 A098262 A098291 A098292 A078070 A004146 A007877 A054493 A011655 A011655 A049683
• Chebyshev polynomials of the first kind (T- or C- polynomials) (12): A098249 A049684 A095004 A098296-A098299 A098300-A098310 A005386 A092936 A099270-A099273 A099275-A099279 A099365-A099374 A099368 A099397 A001108 A007598 A079291
• Chebyshev polynomials of the second kind (U- or S- polynomials) ( 1): A001787 A001788 A001789 A002605 A003472 A008312 A008313 A008315 A010892 A020540 A020541 A020542
• Chebyshev polynomials of the second kind (U- or S- polynomials) ( 2): A030195 A030191 A030221 A030192 A030240 A049310 A049347 A053117 A053118 A053119 A053121 A002700
• Chebyshev polynomials of the second kind (U- or S- polynomials) ( 3): A053122 A051323 A053124 A053125 A053126 A053127 A053128 A053129 A053130 A053131 A001653 A001109
• Chebyshev polynomials of the second kind (U- or S- polynomials) ( 4): A054450 A001090 A001353 A018913 A004187 A004254 A004189 A001834 A002878 A002315 A056594
• Chebyshev polynomials of the second kind (U- or S- polynomials) ( 5): A057076 A057077 A057078 A057079 A057080 A057081 A001906 A056854 A056918
• Chebyshev polynomials of the second kind (U- or S- polynomials) ( 6): A057083 A057084 A057085 A057086 A057087 A057088 A057089 A057090 A057091 A057092 A057093 A057094
• Chebyshev polynomials of the second kind (U- or S- polynomials) ( 7): A025170 A025171 A004190 A001653 A070997 A001091 A072256 A054320 A004189 A001075 A005248 A003501
• Chebyshev polynomials of the second kind (U- or S- polynomials) ( 8): A054491 A054488 A023038 A004191 A007655 A011943 A049660 A023039 A001081 A001085 A075843 A077234
• Chebyshev polynomials of the second kind (U- or S- polynomials) ( 9): A077237 A077413 A077241 A077243 A077245 A077247 A077249 A077251 A077410 A077412
• Chebyshev polynomials of the second kind (U- or S- polynomials) (10): A028230 A001835 A029547 A046176 A029548 A077416 A077418 A077420 A077421 A077422 A077423
• Chebyshev polynomials of the second kind (U- or S- polynomials) (11): A077424 A077428 A078356 A078362 A078363 A078364 A078365 A078366 A078367 A078368 A078369
• Chebyshev polynomials of the second kind (U- or S- polynomials) (12): A000129 A001333 A001076 A001077 A005667 A005668 A041025 A078986 A078987
• Chebyshev polynomials of the second kind (U- or S- polynomials) (13): A092499 A090733 A090248 A090251 A001519 A078922 A092521 A092420 A076765 A076139 A049664
• Chebyshev polynomials of the second kind (U- or S- polynomials) (14): A097726 A097727 A097729 A097730 A097732 A097733 A097735 A097736 A097738 A097739 A097741 A097742 A097766 A097767 A097769 A097770
• Chebyshev polynomials of the second kind (U- or S- polynomials) (15): A090729 A090731 A097834-A097845 A098244-A098263 A098291 A098292 A078070 A004146 A007877 A099368 A041041 A052918 A054413 A054493 A098301
• checkers, sequences related to :
• checkers: A055213, A133046, A133047
• Chernoff sequence: A006939*, A051357
• chess, number of games , sequences related to :
• chess, number of games , definition: position = position with castling and en passant information, diagram = position without castling and en passant information
• chess, number of games: A048987* A079485 A006494 A089956
• chess, number of diagrams: A019319* A090051
• chess, number of positions: A083276* A057745 A089957
• chessboard, halving a: A003155
• chessboard, quartering a: A006067, A003213
• Chinese: see also Index entries for sequences related to number of letters in n
• chord diagrams, sequences related to :
• chord diagrams: (1) A007293 A007473 A007474 A007769 A014595 A018191 A018192 A018193 A018225 A022489 A022490 A022491 A022492
• chord diagrams: (2) A022493 A022494 A054499 A054938
• chords in a circle: A001006, A054726, A006533, A000124
• Chowla sequence: see Mian-Chowla sequences
• Chowla's function: sum of divisors excluding 1 and n: A048050*, A002954
• chromatic number of graphs: A006670, A006671
• chromatic number of surface: A000703*, A000934*, A059103
• Chvatal conjecture, sequences related to :
• Chvatal conjecture: A007008
• circle of differences problem: A065677, A065678, A045794
• circle problem: A057655*
• circle product: A101330
• circles, number of ways of arranging: A000081
• circuits: A002631, A002632

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Cl

• class numbers , sequences related to :
• class numbers, (1): A000003, A001985, A001987, A001989, A001991, A002141, A002143, A003646, A003647
• class numbers, (2): A003648, A003649, A003650, A003651, A003652, A005472, A005474, A005847, A005848*, A006641
• class numbers, (3): A006642, A006643, A014599, A014600, A029702, A039958
• class numbers, of fields (1):: A003652, A003649, A003650, A003651, A003639, A006642, A003638, A006643
• class numbers, of fields (2):: A003636, A003637, A005472, A001989, A001987
• class numbers, of Q(sqrt -n), n squarefree: A000924*
• class numbers, of quadratic forms:: A003646, A003647, A006641, A000003, A003648
• class numbers:: A003173, A002143, A000233, A005847, A000362, A002052, A006203, A000508
• classes, switching: A002854*, A006536
• classifications of n things: A005646
• Clifford group, sequences related to :
• Clifford group, Molien series for: A008621, A008718, A024186 (real); A008620, A028288, A039946, A051354 (complex)
• Clifford group, orders of: A001309* (real), A003956* (complex)
• cliques: A005289
• clock sequences: A028354, A028355, A028356, A068962, A007980
• closed under certain affine transformations: see Klarner-Rado sequences
• closure systems: A047684
• clouds: A001205*
• cluster series, sequences related to :
• cluster series:: A003204, A003199, A003203, A003212, A003202, A003198, A003208, A003211, A003201, A003210, A003197, A003207, A003200, A003209, A003206, A003205
• Clusters:: A007174, A007172, A007175, A007173

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Coa

• coconut problem: A002021*, A002022*
• codes, binary, linear sequences related to :
• codes, binary, linear: total number of different [n,k] codes (summed over k): A006116
• codes, binary, linear: total number of inequivalent indecomposable projective [n,k] codes (summed over k): A076838
• codes, binary, linear: total number of inequivalent indecomposable [n,k] codes with no column of zeros (summed over k): A076836
• codes, binary, linear: total number of inequivalent projective [n,k] codes (summed over k): A076834
• codes, binary, linear: total number of inequivalent [n,k] codes (summed over k): A076766
• codes, binary, linear: total number of inequivalent [n,k] codes containing no column of zeros (summed over k): A034343
• codes, binary, linear: triangle of number of different [n,k] codes: A022166
• codes, binary, linear: triangle of number of inequivalent indecomposable projective [n,k] codes: A076837
• codes, binary, linear: triangle of number of inequivalent indecomposable [n,k] codes with no column of zeros: A076835
• codes, binary, linear: triangle of number of inequivalent projective [n,k] codes: A076833
• codes, binary, linear: triangle of number of inequivalent [n,k] codes containing no column of zeros: A076832
• codes, binary, linear: triangle of number of inequivalent [n,k] codes: A076831
• codes, binary, nonlinear: A039754, A000616
• codes, binary, notation: [n,k] denotes a linear code of length n and dimension k, (n,k) a nonlinear code of length n containing k codewords
• codes, covering , sequences related to :
• codes, covering, directed: A066000, A019436
• codes, covering: A060438* A060439* A060440* A000983* A060450* A060451* A029866 A029865 A029867 A004044
• codes, for correcting deletions: A000016, A057591
• codes, for correcting errors on Z-channel: A010101
• codes, for correcting transposition errors: A057608, A057657
• codes, maximal size of binary constant weight, see A(n,d,w)
• codes, maximal size of binary, see A(n, d)
• codes, mixed binary/ternary: A050142, A057574-A057584
• codes, see also (1):: A005861, A005857, A005858, A005862, A005866, A005854, A005863, A005855, A005859, A005865
• codes, see also (2):: A005851, A005860, A005856, A004037, A005852, A000983, A005853, A004038, A001839, A005864, A004039, A001843, A004035, A004036
• codes, self-dual, sequences related to :
• codes, self-dual, enumeration of: A003178*, A003179*, A028362*, A028363*, A001646*, A001647*
• codes, self-dual, extremal of length 72: A018236*
• codes, self-dual, see also (1): A002521 A005137 A007980 A008647 A014487 A016729 A018236 A018237 A027628 A028249
• codes, self-dual, see also (2): A028288 A028309 A028344 A028345 A030062 A030331 A034414 A034415
• coding a recurrence: A005204
• Coefficients, for central differences, A002677, A002676, A002672, A002673, A002675
• Coefficients, for extrapolation, A002738, A002737, A002739
• Coefficients, for numerical differentiation, A002546, A002552, A002545, A002551, A002702, A002554, A002701, A002547, A002548, A002544, A002549, A002550, A002553, A002555
• Coefficients, for numerical integration, A002685, A002209, A002208, A002686, A002195, A002196, A002197, A006685, A002198
• Coefficients, for repeated integration (1):: A002397, A002404, A002398, A002405, A002682, A002401, A002400, A002689, A002688, A002684
• Coefficients, for repeated integration (2):: A002683, A002687, A002406, A002402, A002403, A002399, A002681

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Coi

• coincidences among binomial coefficients: A003015
• coins , sequences related to :
• coins needed to make change: see making change
• coins, tossing: A006857
• coins: (1) A005169 A005170 A007673 A011542 A019591 A033623 A047998 A053344 A054016 A054043 A054044 A054045
• coins: (2) A054046
• Collatz problem: see 3x+1 problem
• collinear: A003142 A049615 A055674 A055675
• Colombian numbers: A003052*, A006378, A036233
• coloring , sequences related to :
• coloring a cube: A006550, A006853, A006854, A000543, A060530, A047780
• coloring a map: see map, coloring
• coloring a triangle: A006527
• coloring an m X n grid: A068253, A047938 (more to be added)
• colorings: (1) A000543 A000545 A006008 A006342 A006853 A006854 A007687 A007688 A047937 A047938 A047939 A047940
• colorings: (2) A047941 A047942 A047943 A047944 A047945 A048246
• colossally abundant numbers: A004490
• colouring is spelled coloring in the OEIS, which uses US rather than English spelling

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Com

• combinations, sequences related to :
• combinations, circular: A006499
• combinatorial number systems: degree t=2: [A002024, A002262] and A138036. Degree t=3: [A194847, A194848, A056558] and A194849. Degree t=4: [A194882, A194883, A194884, A127324] and A194885. See also A056556, A056557, A127321, A127322, A127323.
• combinations: A006499 A006500 A007785 A030662 A037031 A037255 A049022
• comparative probability orderings: A005806
• comparisons: A001768 A001855 A003071 A003075 A006282 A036604
• complements , sequences related to :
• complete graph conjecture, sequences related to :
• complete graph conjecture: A000933*
• complete rulers: see perfect rulers
• complexity , sequences related to :
• complexity, of graphs: A006235 A006237 A006238 A007341 A007342
• complexity, of n (this has been defined in several different ways): A005208, A005245*, A025280, A099053
• composite numbers, sequences related to :
• composite numbers: A002808*
• compositions , sequences related to :
• compositions of n, explicitly: A066099, A124734, A108244, A108730
• compositions of n, number of: A000079*, A126198*, A048004, A048887, A092129, A092921, A000073, A000078
• compositions: (1) A000100 A000102 A003242 A006456 A006979 A006980 A023358 A023360 A023361 A032020 A039911 A039912
• compositions: (2) A048887 A055794 A055800 A055801 A000079*
• compositorial numbers: A036691*, A049650, A060880
• compressibility: A007236
• Comtet, Advanced Combinatorics, sequences found in

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Con

• concatenate divisors: A037278*
• concatenate prime factors: A037276*, A048595* (base 2)
• concatenation of all numbers up through n, see here
• concatenation: There is no universally accepted symbol for concatentaion!
• concatenation: 'a1 followed by a2' is used in A034821
• concatenation: a1 # a2 is used in A133344
• concatenation: a1 & a2 and a1 + a2 may also be used
• concatenation: a1 . a2 is used in A115437 (as in Perl)
• concatenation: a1 // a2 is used in A115429 (as in Fortran)
• concatenation: a1 : a2 is used in A089591
• concatenation: a1 U a2 is used in A165784
• concatenation: a1 ^ a2 is used in A091975 (cf. A091844)
• concatenation: a1a2 is used in A089710
• concatenation: a1_a2 is used in A153164
• concatenation: Maple uses parse(cat(a1, a2, ..., an))
• concatenation: Mathematica uses FromDigits[Join[IntegerDigits[a1], IntegerDigits[a2], ..., IntegerDigits[an]]] or ToExpression[StringJoin[ToString[a1], ToString[a2], ..., ToString[an]]] or FromDigits["a1"<>"a2"<>...<>"an"]
• concatenation: Pari uses eval(Str(a1, a2, ..., an))
• conditionally convergent series: A002387, A092324, A092267, A092753
• conference matrices: see matrices, conference
• configurations , sequences related to :
• configurations (combinatorial or geometrical): A001403* A099999 A023994 A005787 A000698 A100001 A098702 A098804 A098822 A098841 A098851 A098852 A098854
• Congruence property:: A002703, A002704, A002705
• Congruences:: A001915, A001916
• congruent mod 1 to 0 : A000004
• congruent mod 10 to 0 (not) : A052382
• congruent mod 10 to 0 : A008592
• congruent mod 10 to 1 : A017281
• congruent mod 10 to 2 : A017293
• congruent mod 10 to 3 : A017305
• congruent mod 10 to 4 : A017317
• congruent mod 10 to 5 : A017329
• congruent mod 10 to 6 : A017341
• congruent mod 10 to 7 : A017353
• congruent mod 10 to 8 : A017365
• congruent mod 10 to 9 : A017377
• congruent mod 10 to {1, 7} : A131229
• congruent mod 10 to {1, 9} : A090771
• congruent mod 10 to {2, 8} : A090772
• congruent mod 10 to {4, 6} : A090773
• congruent mod 2 to 0 (not) : A005408
• congruent mod 2 to 0 : A005843
• congruent mod 2 to 1 (not) : A005843
• congruent mod 2 to 1 : A005408
• congruent mod 3 to 0 (not) : A001651
• congruent mod 3 to 0 : A008585
• congruent mod 3 to 1 (not) : A007494
• congruent mod 3 to 1 : A016777
• congruent mod 3 to 2 (not) : A032766
• congruent mod 3 to 2 : A016789
• congruent mod 3 to {0, 1} : A032766
• congruent mod 3 to {0, 2} : A007494
• congruent mod 3 to {1, 2} : A001651
• congruent mod 4 to 0 (not) : A042968
• congruent mod 4 to 0 : A008586
• congruent mod 4 to 1 (not) : A004772
• congruent mod 4 to 1 : A016813
• congruent mod 4 to 2 (not) : A042965
• congruent mod 4 to 2 : A016825
• congruent mod 4 to 3 (not) : A004773
• congruent mod 4 to 3 : A004767
• congruent mod 4 to {0, 1, 2} : A004773
• congruent mod 4 to {0, 1, 3} : A042965
• congruent mod 4 to {0, 1} : A042948
• congruent mod 4 to {0, 2, 3} : A004772
• congruent mod 4 to {0, 3} : A014601
• congruent mod 4 to {1, 2, 3} : A042968
• congruent mod 4 to {1, 2} : A042963
• congruent mod 4 to {2, 3} : A042964
• congruent mod 5 to 0 (not) : A047201
• congruent mod 5 to 0 : A008587
• congruent mod 5 to 1 (not) : A047203
• congruent mod 5 to 1 : A016861
• congruent mod 5 to 2 (not) : A047207
• congruent mod 5 to 2 : A016873
• congruent mod 5 to 3 (not) : A032769
• congruent mod 5 to 3 : A016885
• congruent mod 5 to 4 (not) : A001068
• congruent mod 5 to 4 : A016897
• congruent mod 5 to {0, 1, 2, 3} : A001068
• congruent mod 5 to {0, 1, 2, 4} : A032769
• congruent mod 5 to {0, 1, 2} : A047217
• congruent mod 5 to {0, 1, 3, 4} : A047207
• congruent mod 5 to {0, 1, 3} : A047220
• congruent mod 5 to {0, 1, 4} : A008854
• congruent mod 5 to {0, 1} : A008851
• congruent mod 5 to {0, 2, 3, 4} : A047203
• congruent mod 5 to {0, 2, 3} : A047222
• congruent mod 5 to {0, 2, 4} : A047212
• congruent mod 5 to {0, 2} : A047215
• congruent mod 5 to {0, 3, 4} : A047205
• congruent mod 5 to {0, 3} : A047218
• congruent mod 5 to {0, 4} : A047208
• congruent mod 5 to {1, 2, 3, 4} : A047201
• congruent mod 5 to {1, 2, 3} : A047223
• congruent mod 5 to {1, 2, 4} : A032793
• congruent mod 5 to {1, 2} : A047216
• congruent mod 5 to {1, 3, 4} : A047206
• congruent mod 5 to {1, 3} : A047219
• congruent mod 5 to {1, 4} : A047209
• congruent mod 5 to {2, 3, 4} : A047202
• congruent mod 5 to {2, 3} : A047221
• congruent mod 5 to {2, 4} : A047211
• congruent mod 5 to {3, 4} : A047204
• congruent mod 6 to 0 (not) : A047253
• congruent mod 6 to 0 : A008588
• congruent mod 6 to 1 (not) : A047248
• congruent mod 6 to 1 : A016921
• congruent mod 6 to 2 (not) : A047252
• congruent mod 6 to 2 : A016933
• congruent mod 6 to 3 (not) : A047263
• congruent mod 6 to 3 : A016945
• congruent mod 6 to 4 (not) : A047256
• congruent mod 6 to 4 : A016957
• congruent mod 6 to 5 (not) : A047226
• congruent mod 6 to 5 : A016969
• congruent mod 6 to {0, 1, 2, 3, 4} : A047226
• congruent mod 6 to {0, 1, 2, 3, 5} : A047256
• congruent mod 6 to {0, 1, 2, 3} : A047246
• congruent mod 6 to {0, 1, 2, 4, 5} : A047263
• congruent mod 6 to {0, 1, 2, 4} : A047237
• congruent mod 6 to {0, 1, 2, 5} : A047269
• congruent mod 6 to {0, 1, 2} : A047240
• congruent mod 6 to {0, 1, 3, 4, 5} : A047252
• congruent mod 6 to {0, 1, 3, 5} : A047273
• congruent mod 6 to {0, 1, 3} : A047242
• congruent mod 6 to {0, 1, 4, 5} : A047260
• congruent mod 6 to {0, 1, 4} : A047234
• congruent mod 6 to {0, 1, 5} : A047266
• congruent mod 6 to {0, 1} : A047225
• congruent mod 6 to {0, 2, 3, 4, 5} : A047248
• congruent mod 6 to {0, 2, 3, 4} : A047229
• congruent mod 6 to {0, 2, 3} : A047244
• congruent mod 6 to {0, 2, 4, 5} : A047262
• congruent mod 6 to {0, 2, 5} : A047267
• congruent mod 6 to {0, 2} : A047238
• congruent mod 6 to {0, 3, 4, 5} : A047250
• congruent mod 6 to {0, 3, 4} : A047231
• congruent mod 6 to {0, 3, 5} : A047271
• congruent mod 6 to {0, 4, 5} : A047258
• congruent mod 6 to {0, 4} : A047233
• congruent mod 6 to {0, 5} : A047264
• congruent mod 6 to {1, 2, 3, 4, 5} : A047248
• congruent mod 6 to {1, 2, 3, 4} : A031477
• congruent mod 6 to {1, 2, 3, 5} : A047255
• congruent mod 6 to {1, 2, 3} : A047245
• congruent mod 6 to {1, 2, 4} : A047236
• congruent mod 6 to {1, 2, 5} : A047268
• congruent mod 6 to {1, 2} : A047239
• congruent mod 6 to {1, 3, 4, 5} : A047251
• congruent mod 6 to {1, 3, 4} : A029739
• congruent mod 6 to {1, 3} : A047241
• congruent mod 6 to {1, 4, 5} : A047259
• congruent mod 6 to {1, 5} : A007310
• congruent mod 6 to {2, 3, 4, 5} : A047247
• congruent mod 6 to {2, 3, 4} : A047228
• congruent mod 6 to {2, 3, 5} : A047254
• congruent mod 6 to {2, 3} : A047243
• congruent mod 6 to {2, 4, 5} : A047261
• congruent mod 6 to {2, 4} : A047235
• congruent mod 6 to {3, 4, 5} : A047249
• congruent mod 6 to {3, 4} : A047230
• congruent mod 6 to {3, 5} : A047270
• congruent mod 6 to {4, 5} : A047257
• congruent mod 7 to 0 (not) : A047304
• congruent mod 7 to 0 : A008589
• congruent mod 7 to 1 (not) : A047306
• congruent mod 7 to 1 : A016993
• congruent mod 7 to 2 (not) : A047310
• congruent mod 7 to 2 : A017005
• congruent mod 7 to 3 (not) : A047318
• congruent mod 7 to 3 : A017017
• congruent mod 7 to 4 (not) : A032775
• congruent mod 7 to 4 : A017029
• congruent mod 7 to 5 (not) : A047303
• congruent mod 7 to 5 : A017041
• congruent mod 7 to 6 (not) : A047368
• congruent mod 7 to 6 : A017053
• congruent mod 7 to {0, 1, 2, 3, 4, 5} : A047368
• congruent mod 7 to {0, 1, 2, 3, 4, 6} : A047303
• congruent mod 7 to {0, 1, 2, 3, 4} : A047337
• congruent mod 7 to {0, 1, 2, 3, 5, 6} : A032775
• congruent mod 7 to {0, 1, 2, 3, 5} : A047373
• congruent mod 7 to {0, 1, 2, 3, 6} : A047287
• congruent mod 7 to {0, 1, 2, 3} : A047361
• congruent mod 7 to {0, 1, 2, 4, 5, 6} : A047318
• congruent mod 7 to {0, 1, 2, 4, 5} : A047381
• congruent mod 7 to {0, 1, 2, 4, 6} : A047295
• congruent mod 7 to {0, 1, 2, 4} : A047351
• congruent mod 7 to {0, 1, 2, 5, 6} : A047326
• congruent mod 7 to {0, 1, 2, 5} : A047388
• congruent mod 7 to {0, 1, 2, 6} : A047279
• congruent mod 7 to {0, 1, 2} : A047354
• congruent mod 7 to {0, 1, 3, 4, 5, 6} : A047310
• congruent mod 7 to {0, 1, 3, 4, 5} : A047367
• congruent mod 7 to {0, 1, 3, 4, 6} : A047299
• congruent mod 7 to {0, 1, 3, 4} : A047344
• congruent mod 7 to {0, 1, 3, 5, 6} : A047330
• congruent mod 7 to {0, 1, 3, 5} : A047392
• congruent mod 7 to {0, 1, 3, 6} : A047283
• congruent mod 7 to {0, 1, 3} : A047357
• congruent mod 7 to {0, 1, 4, 5, 6} : A047314
• congruent mod 7 to {0, 1, 4, 5} : A047377
• congruent mod 7 to {0, 1, 4, 6} : A047291
• congruent mod 7 to {0, 1, 4} : A047347
• congruent mod 7 to {0, 1, 5, 6} : A047322
• congruent mod 7 to {0, 1, 5} : A047384
• congruent mod 7 to {0, 1, 6} : A047275
• congruent mod 7 to {0, 1} : A047274
• congruent mod 7 to {0, 2, 3, 4, 5, 6} : A047306
• congruent mod 7 to {0, 2, 3, 4, 5} : A047363
• congruent mod 7 to {0, 2, 3, 4, 6} : A047301
• congruent mod 7 to {0, 2, 3, 4} : A047340
• congruent mod 7 to {0, 2, 3, 5, 6} : A047332
• congruent mod 7 to {0, 2, 3, 5} : A047371
• congruent mod 7 to {0, 2, 3, 6} : A047285
• congruent mod 7 to {0, 2, 3} : A047359
• congruent mod 7 to {0, 2, 4, 5, 6} : A047316
• congruent mod 7 to {0, 2, 4, 5} : A047379
• congruent mod 7 to {0, 2, 4, 6} : A047293
• congruent mod 7 to {0, 2, 4} : A047349
• congruent mod 7 to {0, 2, 5, 6} : A047324
• congruent mod 7 to {0, 2, 5} : A047386
• congruent mod 7 to {0, 2, 6} : A047277
• congruent mod 7 to {0, 2} : A047352
• congruent mod 7 to {0, 3, 4, 5, 6} : A047308
• congruent mod 7 to {0, 3, 4, 5} : A047365
• congruent mod 7 to {0, 3, 4, 6} : A047297
• congruent mod 7 to {0, 3, 4} : A047342
• congruent mod 7 to {0, 3, 5, 6} : A047328
• congruent mod 7 to {0, 3, 5} : A047390
• congruent mod 7 to {0, 3, 6} : A047281
• congruent mod 7 to {0, 3} : A047355
• congruent mod 7 to {0, 4, 5, 6} : A047312
• congruent mod 7 to {0, 4, 5} : A047375
• congruent mod 7 to {0, 4, 6} : A047289
• congruent mod 7 to {0, 4} : A047345
• congruent mod 7 to {0, 5, 6} : A047320
• congruent mod 7 to {0, 5} : A047382
• congruent mod 7 to {0, 6} : A047335
• congruent mod 7 to {1, 2, 3, 4, 5, 6} : A047304
• congruent mod 7 to {1, 2, 3, 4, 5} : A047369
• congruent mod 7 to {1, 2, 3, 4, 6} : A047302
• congruent mod 7 to {1, 2, 3, 4} : A047338
• congruent mod 7 to {1, 2, 3, 5, 6} : A032796
• congruent mod 7 to {1, 2, 3, 5} : A047372
• congruent mod 7 to {1, 2, 3, 6} : A047286
• congruent mod 7 to {1, 2, 3} : A047360
• congruent mod 7 to {1, 2, 4, 5, 6} : A047317
• congruent mod 7 to {1, 2, 4, 5} : A047380
• congruent mod 7 to {1, 2, 4, 6} : A047294
• congruent mod 7 to {1, 2, 4} : A047350
• congruent mod 7 to {1, 2, 5, 6} : A047325
• congruent mod 7 to {1, 2, 5} : A047387
• congruent mod 7 to {1, 2, 6} : A047278
• congruent mod 7 to {1, 2} : A047353
• congruent mod 7 to {1, 3, 4, 5, 6} : A047309
• congruent mod 7 to {1, 3, 4, 5} : A047366
• congruent mod 7 to {1, 3, 4, 6} : A047298
• congruent mod 7 to {1, 3, 4} : A047343
• congruent mod 7 to {1, 3, 5, 6} : A047329
• congruent mod 7 to {1, 3, 5} : A047391
• congruent mod 7 to {1, 3, 6} : A047282
• congruent mod 7 to {1, 3} : A047356
• congruent mod 7 to {1, 4, 5, 6} : A047313
• congruent mod 7 to {1, 4, 5} : A047376
• congruent mod 7 to {1, 4, 6} : A047290
• congruent mod 7 to {1, 4} : A047346
• congruent mod 7 to {1, 5, 6} : A047321
• congruent mod 7 to {1, 5} : A047383
• congruent mod 7 to {1, 6} : A047336
• congruent mod 7 to {2, 3, 4, 5, 6} : A047305
• congruent mod 7 to {2, 3, 4, 5} : A047362
• congruent mod 7 to {2, 3, 4, 6} : A047300
• congruent mod 7 to {2, 3, 4} : A047339
• congruent mod 7 to {2, 3, 5, 6} : A047331
• congruent mod 7 to {2, 3, 5} : A047370
• congruent mod 7 to {2, 3, 6} : A047284
• congruent mod 7 to {2, 3} : A047358
• congruent mod 7 to {2, 4, 5, 6} : A047315
• congruent mod 7 to {2, 4, 5} : A047378
• congruent mod 7 to {2, 4, 6} : A047292
• congruent mod 7 to {2, 4} : A047348
• congruent mod 7 to {2, 5, 6} : A047323
• congruent mod 7 to {2, 5} : A047385
• congruent mod 7 to {2, 6} : A047276
• congruent mod 7 to {3, 4, 5, 6} : A047307
• congruent mod 7 to {3, 4, 5} : A047364
• congruent mod 7 to {3, 4, 6} : A047296
• congruent mod 7 to {3, 4} : A047341
• congruent mod 7 to {3, 5, 6} : A047327
• congruent mod 7 to {3, 5} : A047389
• congruent mod 7 to {3, 6} : A047280
• congruent mod 7 to {4, 5, 6} : A047311
• congruent mod 7 to {4, 5} : A047374
• congruent mod 7 to {4, 6} : A047288
• congruent mod 7 to {5, 6} : A047319
• congruent mod 8 to 0 (not) : A047592
• congruent mod 8 to 0 : A008590
• congruent mod 8 to 1 (not) : A047594
• congruent mod 8 to 1 : A017077
• congruent mod 8 to 2 (not) : A047565
• congruent mod 8 to 2 : A017089
• congruent mod 8 to 3 (not) : A047573
• congruent mod 8 to 3 : A017101
• congruent mod 8 to 4 (not) : A047588
• congruent mod 8 to 4 : A017113
• congruent mod 8 to 5 (not) : A004776
• congruent mod 8 to 5 : A004770
• congruent mod 8 to 6 (not) : A047595
• congruent mod 8 to 6 : A017137
• congruent mod 8 to 7 (not) : A004777
• congruent mod 8 to 7 : A004771
• congruent mod 8 to {0, 1, 2, 3, 4, 5, 6} : A004777
• congruent mod 8 to {0, 1, 2, 3, 4, 5, 7} : A047595
• congruent mod 8 to {0, 1, 2, 3, 4, 5} : A047602
• congruent mod 8 to {0, 1, 2, 3, 4, 6, 7} : A004776
• congruent mod 8 to {0, 1, 2, 3, 4, 6} : A047420
• congruent mod 8 to {0, 1, 2, 3, 4, 7} : A047549
• congruent mod 8 to {0, 1, 2, 3, 4} : A047453
• congruent mod 8 to {0, 1, 2, 3, 5, 6, 7} : A047588
• congruent mod 8 to {0, 1, 2, 3, 5, 6} : A047450
• congruent mod 8 to {0, 1, 2, 3, 5, 7} : A047490
• congruent mod 8 to {0, 1, 2, 3, 5} : A047607
• congruent mod 8 to {0, 1, 2, 3, 6, 7} : A047505
• congruent mod 8 to {0, 1, 2, 3, 6} : A047405
• congruent mod 8 to {0, 1, 2, 3, 7} : A047534
• congruent mod 8 to {0, 1, 2, 3} : A047476
• congruent mod 8 to {0, 1, 2, 4, 5, 6, 7} : A047573
• congruent mod 8 to {0, 1, 2, 4, 5, 7} : A047498
• congruent mod 8 to {0, 1, 2, 4, 5} : A047614
• congruent mod 8 to {0, 1, 2, 4, 6, 7} : A047513
• congruent mod 8 to {0, 1, 2, 4, 6} : A047412
• congruent mod 8 to {0, 1, 2, 4, 7} : A047542
• congruent mod 8 to {0, 1, 2, 4} : A047466
• congruent mod 8 to {0, 1, 2, 5, 6, 7} : A047581
• congruent mod 8 to {0, 1, 2, 5, 6} : A047442
• congruent mod 8 to {0, 1, 2, 5, 7} : A047483
• congruent mod 8 to {0, 1, 2, 5} : A047620
• congruent mod 8 to {0, 1, 2, 6, 7} : A047555
• congruent mod 8 to {0, 1, 2, 6} : A047397
• congruent mod 8 to {0, 1, 2, 7} : A047527
• congruent mod 8 to {0, 1, 2} : A047469
• congruent mod 8 to {0, 1, 3, 4, 5, 6, 7} : A047565
• congruent mod 8 to {0, 1, 3, 4, 5, 6} : A047428
• congruent mod 8 to {0, 1, 3, 4, 5} : A047601
• congruent mod 8 to {0, 1, 3, 4, 6, 7} : A047517
• congruent mod 8 to {0, 1, 3, 4, 6} : A047416
• congruent mod 8 to {0, 1, 3, 4, 7} : A047545
• congruent mod 8 to {0, 1, 3, 4} : A047460
• congruent mod 8 to {0, 1, 3, 5, 6, 7} : A047585
• congruent mod 8 to {0, 1, 3, 5, 6} : A047446
• congruent mod 8 to {0, 1, 3, 5, 7} : A047486
• congruent mod 8 to {0, 1, 3, 5} : A047624
• congruent mod 8 to {0, 1, 3, 6, 7} : A047559
• congruent mod 8 to {0, 1, 3, 6} : A047401
• congruent mod 8 to {0, 1, 3, 7} : A047530
• congruent mod 8 to {0, 1, 3} : A047472
• congruent mod 8 to {0, 1, 4, 5, 6, 7} : A047569
• congruent mod 8 to {0, 1, 4, 5, 6} : A047432
• congruent mod 8 to {0, 1, 4, 5, 7} : A047494
• congruent mod 8 to {0, 1, 4, 6, 7} : A047509
• congruent mod 8 to {0, 1, 4, 6} : A047409
• congruent mod 8 to {0, 1, 4, 7} : A047538
• congruent mod 8 to {0, 1, 4} : A047462
• congruent mod 8 to {0, 1, 5, 6, 7} : A047577
• congruent mod 8 to {0, 1, 5, 6} : A047439
• congruent mod 8 to {0, 1, 5, 7} : A047479
• congruent mod 8 to {0, 1, 5} : A047616
• congruent mod 8 to {0, 1, 6, 7} : A047551
• congruent mod 8 to {0, 1, 6} : A047394
• congruent mod 8 to {0, 1, 7} : A047523
• congruent mod 8 to {0, 1} : A047393
• congruent mod 8 to {0, 2, 3, 4, 5, 6, 7} : A047594
• congruent mod 8 to {0, 2, 3, 4, 5, 6} : A047424
• congruent mod 8 to {0, 2, 3, 4, 5, 7} : A047503
• congruent mod 8 to {0, 2, 3, 4, 5} : A047597
• congruent mod 8 to {0, 2, 3, 4, 6} : A047418
• congruent mod 8 to {0, 2, 3, 4, 7} : A047547
• congruent mod 8 to {0, 2, 3, 4} : A047456
• congruent mod 8 to {0, 2, 3, 5, 6, 7} : A047587
• congruent mod 8 to {0, 2, 3, 5, 6} : A047448
• congruent mod 8 to {0, 2, 3, 5, 7} : A047488
• congruent mod 8 to {0, 2, 3, 5} : A047605
• congruent mod 8 to {0, 2, 3, 6, 7} : A047560
• congruent mod 8 to {0, 2, 3, 6} : A047403
• congruent mod 8 to {0, 2, 3, 7} : A047532
• congruent mod 8 to {0, 2, 3} : A047474
• congruent mod 8 to {0, 2, 4, 5, 6, 7} : A047571
• congruent mod 8 to {0, 2, 4, 5, 6} : A047434
• congruent mod 8 to {0, 2, 4, 5, 7} : A047496
• congruent mod 8 to {0, 2, 4, 5} : A047612
• congruent mod 8 to {0, 2, 4, 6, 7} : A047511
• congruent mod 8 to {0, 2, 4, 7} : A047540
• congruent mod 8 to {0, 2, 4} : A047464
• congruent mod 8 to {0, 2, 5, 6, 7} : A047579
• congruent mod 8 to {0, 2, 5, 6} : A047441
• congruent mod 8 to {0, 2, 5, 7} : A047481
• congruent mod 8 to {0, 2, 5} : A047618
• congruent mod 8 to {0, 2, 6, 7} : A047553
• congruent mod 8 to {0, 2, 6} : A047395
• congruent mod 8 to {0, 2, 7} : A047525
• congruent mod 8 to {0, 2} : A047467
• congruent mod 8 to {0, 3, 4, 5, 6, 7} : A047563
• congruent mod 8 to {0, 3, 4, 5, 6} : A047426
• congruent mod 8 to {0, 3, 4, 5, 7} : A047500
• congruent mod 8 to {0, 3, 4, 5} : A047599
• congruent mod 8 to {0, 3, 4, 6, 7} : A047515
• congruent mod 8 to {0, 3, 4, 6} : A047414
• congruent mod 8 to {0, 3, 4} : A047458
• congruent mod 8 to {0, 3, 5, 6, 7} : A047583
• congruent mod 8 to {0, 3, 5, 6} : A047444
• congruent mod 8 to {0, 3, 5} : A047622
• congruent mod 8 to {0, 3, 6, 7} : A047557
• congruent mod 8 to {0, 3, 6} : A047399
• congruent mod 8 to {0, 3, 7} : A047528
• congruent mod 8 to {0, 3} : A047470
• congruent mod 8 to {0, 4, 5, 6, 7} : A047567
• congruent mod 8 to {0, 4, 5, 6} : A047430
• congruent mod 8 to {0, 4, 5, 7} : A047492
• congruent mod 8 to {0, 4, 5} : A047609
• congruent mod 8 to {0, 4, 6, 7} : A047507
• congruent mod 8 to {0, 4, 6} : A047407
• congruent mod 8 to {0, 4, 7} : A047536
• congruent mod 8 to {0, 5, 6, 7} : A047575
• congruent mod 8 to {0, 5, 6} : A047437
• congruent mod 8 to {0, 5, 7} : A047477
• congruent mod 8 to {0, 5} : A047615
• congruent mod 8 to {0, 6, 7} : A047590
• congruent mod 8 to {0, 6} : A047451
• congruent mod 8 to {0, 7} : A047521
• congruent mod 8 to {1, 2, 3, 4, 5, 6, 7} : A047592
• congruent mod 8 to {1, 2, 3, 4, 5, 6} : A047422
• congruent mod 8 to {1, 2, 3, 4, 5, 7} : A047504
• congruent mod 8 to {1, 2, 3, 4, 5} : A047603
• congruent mod 8 to {1, 2, 3, 4, 6, 7} : A047519
• congruent mod 8 to {1, 2, 3, 4, 6} : A047419
• congruent mod 8 to {1, 2, 3, 4, 7} : A047449
• congruent mod 8 to {1, 2, 3, 4, 7} : A047548
• congruent mod 8 to {1, 2, 3, 4} : A047454
• congruent mod 8 to {1, 2, 3, 5, 7} : A047489
• congruent mod 8 to {1, 2, 3, 5} : A047606
• congruent mod 8 to {1, 2, 3, 6, 7} : A047561
• congruent mod 8 to {1, 2, 3, 6} : A047404
• congruent mod 8 to {1, 2, 3, 7} : A047533
• congruent mod 8 to {1, 2, 3} : A047475
• congruent mod 8 to {1, 2, 4, 5, 6, 7} : A047572
• congruent mod 8 to {1, 2, 4, 5, 6} : A047435
• congruent mod 8 to {1, 2, 4, 5, 7} : A047497
• congruent mod 8 to {1, 2, 4, 5} : A047613
• congruent mod 8 to {1, 2, 4, 6, 7} : A047512
• congruent mod 8 to {1, 2, 4, 6} : A047411
• congruent mod 8 to {1, 2, 4, 7} : A047541
• congruent mod 8 to {1, 2, 4} : A047465
• congruent mod 8 to {1, 2, 5, 6, 7} : A047580
• congruent mod 8 to {1, 2, 5, 7} : A047482
• congruent mod 8 to {1, 2, 5} : A047619
• congruent mod 8 to {1, 2, 6, 7} : A047554
• congruent mod 8 to {1, 2, 6} : A047396
• congruent mod 8 to {1, 2, 7} : A047526
• congruent mod 8 to {1, 2} : A047468
• congruent mod 8 to {1, 3, 4, 5, 6, 7} : A047564
• congruent mod 8 to {1, 3, 4, 5, 6} : A047427
• congruent mod 8 to {1, 3, 4, 5, 7} : A047501
• congruent mod 8 to {1, 3, 4, 5} : A047600
• congruent mod 8 to {1, 3, 4, 6, 7} : A047516
• congruent mod 8 to {1, 3, 4, 6} : A047415
• congruent mod 8 to {1, 3, 4, 7} : A047544
• congruent mod 8 to {1, 3, 4} : A047459
• congruent mod 8 to {1, 3, 5, 6, 7} : A047584
• congruent mod 8 to {1, 3, 5, 6} : A047445
• congruent mod 8 to {1, 3, 5} : A047623
• congruent mod 8 to {1, 3, 6, 7} : A047558
• congruent mod 8 to {1, 3, 6} : A047400
• congruent mod 8 to {1, 3, 7} : A047529
• congruent mod 8 to {1, 3} : A047471
• congruent mod 8 to {1, 4, 5, 6, 7} : A047568
• congruent mod 8 to {1, 4, 5, 6} : A047431
• congruent mod 8 to {1, 4, 5, 7} : A047493
• congruent mod 8 to {1, 4, 5} : A047610
• congruent mod 8 to {1, 4, 6, 7} : A047508
• congruent mod 8 to {1, 4, 6} : A047408
• congruent mod 8 to {1, 4, 7} : A047537
• congruent mod 8 to {1, 4} : A047461
• congruent mod 8 to {1, 5, 6, 7} : A047576
• congruent mod 8 to {1, 5, 6} : A047438
• congruent mod 8 to {1, 5, 7} : A047478
• congruent mod 8 to {1, 6, 7} : A047591
• congruent mod 8 to {1, 6} : A047452
• congruent mod 8 to {1, 7} : A047522
• congruent mod 8 to {2, 3, 4, 5, 6, 7} : A047593
• congruent mod 8 to {2, 3, 4, 5, 6} : A047423
• congruent mod 8 to {2, 3, 4, 5, 7} : A047502
• congruent mod 8 to {2, 3, 4, 5} : A047596
• congruent mod 8 to {2, 3, 4, 6, 7} : A047518
• congruent mod 8 to {2, 3, 4, 6} : A047417
• congruent mod 8 to {2, 3, 4, 7} : A047546
• congruent mod 8 to {2, 3, 4} : A047455
• congruent mod 8 to {2, 3, 5, 6, 7} : A047586
• congruent mod 8 to {2, 3, 5, 6} : A047447
• congruent mod 8 to {2, 3, 5, 7} : A047487
• congruent mod 8 to {2, 3, 5} : A047604
• congruent mod 8 to {2, 3, 6} : A047402
• congruent mod 8 to {2, 3, 7} : A047531
• congruent mod 8 to {2, 3} : A047473
• congruent mod 8 to {2, 4, 5, 6, 7} : A047570
• congruent mod 8 to {2, 4, 5, 6} : A047433
• congruent mod 8 to {2, 4, 5, 7} : A047495
• congruent mod 8 to {2, 4, 5} : A047611
• congruent mod 8 to {2, 4, 6, 7} : A047510
• congruent mod 8 to {2, 4, 6} : A047410
• congruent mod 8 to {2, 4, 7} : A047539
• congruent mod 8 to {2, 4} : A047463
• congruent mod 8 to {2, 5, 6, 7} : A047578
• congruent mod 8 to {2, 5, 6} : A047440
• congruent mod 8 to {2, 5, 7} : A047480
• congruent mod 8 to {2, 5} : A047617
• congruent mod 8 to {2, 6, 7} : A047552
• congruent mod 8 to {2, 7} : A047524
• congruent mod 8 to {3, 4, 5, 6, 7} : A047562
• congruent mod 8 to {3, 4, 5, 6} : A047425
• congruent mod 8 to {3, 4, 5, 7} : A047499
• congruent mod 8 to {3, 4, 5} : A047598
• congruent mod 8 to {3, 4, 6, 7} : A047514
• congruent mod 8 to {3, 4, 6} : A047413
• congruent mod 8 to {3, 4, 7} : A047543
• congruent mod 8 to {3, 4} : A047457
• congruent mod 8 to {3, 5, 6, 7} : A047582
• congruent mod 8 to {3, 5, 6} : A047443
• congruent mod 8 to {3, 5, 7} : A047484
• congruent mod 8 to {3, 5} : A047621
• congruent mod 8 to {3, 6, 7} : A047556
• congruent mod 8 to {3, 6} : A047398
• congruent mod 8 to {4, 5, 6, 7} : A047566
• congruent mod 8 to {4, 5, 6} : A047429
• congruent mod 8 to {4, 5, 7} : A047491
• congruent mod 8 to {4, 5} : A047608
• congruent mod 8 to {4, 6, 7} : A047506
• congruent mod 8 to {4, 6} : A047406
• congruent mod 8 to {4, 7} : A047535
• congruent mod 8 to {5, 6, 7} : A047574
• congruent mod 8 to {5, 6} : A047436
• congruent mod 8 to {5, 7} : A047550
• congruent mod 8 to {6, 7} : A047589
• congruent mod 9 to 0 (not) : A168183
• congruent mod 9 to 0 : A008591
• congruent mod 9 to 1 : A017173
• congruent mod 9 to 2 : A017185
• congruent mod 9 to 3 : A017197
• congruent mod 9 to 4 : A017209
• congruent mod 9 to 5 : A017221
• congruent mod 9 to 6 : A017233
• congruent mod 9 to 7 : A017245
• congruent mod 9 to 8 : A017257
• congruent mod 9 to {0, 1, 2, 3, 6, 7, 8} : A060464
• congruent mod 9 to {0, 1} : A090570
• congruent mod 9 to {0, 2, 5, 8} : A174438
• congruent mod 9 to {1, 4, 5, 8} : A174396
• congruent mod 9 to {1, 8} : A056020
• congruent mod 9 to {2, 4, 5, 7} : A056527
• congruent mod 9 to {2, 7} : A063289
• congruent mod 9 to {3, 6} : A016051
• congruent mod 9 to {4, 5} : A156638
• congruent mod 9 to {4, 7} : A125758
• congruent numbers: A003273*, A006991, A016090
• congruent products between domains N and GF(2)[X] , sequences defined by :
• congruent products between domains N and GF(2)[X], Here * stands for ordinary multiplication (A004247), and X means carryless GF(2)[X] multiplication (A048720))
• congruent products between domains N and GF(2)[X], 3*n = 3Xn (A003714), 3*n = 7Xn (A048717), 3*n = 7Xn and 5*n = 5Xn (A048719)
• congruent products between domains N and GF(2)[X], 5*n = 5Xn (A048716), 7*n = 7Xn (A048715), 7*n = 11Xn (A115770)
• congruent products between domains N and GF(2)[X], 9*n = 9Xn (A115845), 9*n = 25Xn (A115801), 9*n = 25Xn, but 17*n is not 49Xn (A115811)
• congruent products between domains N and GF(2)[X], 11*n = 31Xn (A115803), 13*n = 21Xn (A115772), 13*n = 29Xn (A115805)
• congruent products between domains N and GF(2)[X], 15*n = 15Xn (A048718), 15*n = 23Xn (A115774), 15*n = 27Xn (A115807)
• congruent products between domains N and GF(2)[X], 17*n = 17Xn (A115847), 17*n = 49Xn (A115809), 19*n = 55Xn (A115874)
• congruent products between domains N and GF(2)[X], 21*n = 21Xn (A115422), 31*n = 31Xn (A115423), 33*n = 33Xn (A114086)
• congruent products between domains N and GF(2)[X], 41*n = 105Xn (A115876), 49*n = 81Xn (A114384), 57*n = 73Xn (A114386)
• congruent products between domains N and GF(2)[X], 63*n = 63Xn (A115424)
• congruent products between domains N and GF(2)[X], array of solutions for n*k = A065621(n) X k: A115872
• congruent products between domains N and GF(2)[X], see also A115857, A115871
• congruent products between domains N and GF(2)[X]: see also congruent products under XOR
• congruent products under XOR , sequences defined by :
• congruent products under XOR, 3*n = 2*n XOR n (A003714), 5*n = 4*n XOR n (A048716), 5*n = 3*n XOR 2*n (A115767)
• congruent products under XOR, 7*n = 6*n XOR n (A048715), 7*n = 5*n XOR 2*n (A115813), 7*n = 4*n XOR 3*n (A048715)
• congruent products under XOR, 11*n = 10*n XOR n (A115793), 11*n = 9*n XOR 2*n (A115795), 11*n = 8*n XOR 3*n (A115797)
• congruent products under XOR, 11*n = 7*n XOR 4*n (A115799), 11*n = 6*n XOR 5*n (A115827), 15*n = 14*n XOR n (A048718)
• congruent products under XOR, 17*n = 16*n XOR n (A115847), 17*n = 13*n XOR 4*n (A115817), 19*n = 15*n XOR 4*n (A115819)
• congruent products under XOR, 21*n = 20*n XOR n (A115422), 21*n = 15*n XOR 6*n (A115821), 21*n = 11*n XOR 10*n (A115829)
• congruent products under XOR, 23*n = 13*n XOR 8*n (A115823), 25*n = 16*n XOR 9*n (A115831), 33*n = 17*n XOR 16*n (A115833)
• congruent products under XOR, 31*n = 30*n XOR n (A115423), 33*n = 32*n XOR n (A114086), 63*n = 62*n XOR n (A115424)
• congruent products under XOR, 9*n = 8*n XOR n (A115845), 9*n = 7*n XOR 2*n (A115815)
• congruent products under XOR, least k such that n XOR n*2^k = n*(2^k + 1), A116361
• congruent products under XOR: see also congruent products between domains N and GF(2)[X]
• conjecture, sequences related to various conjectures :
• conjecture, curling number: A094004
• conjectured formulas: see A005158, A005160, A005162, A005163, A005164 (there are conjectured formulas for these sequences which may still be open problems)
• conjectured sequences (00): The following sequences contain one or more terms that are only conjectured values
• conjectured sequences (01): In some cases the conjectured terms are only mentioned in the comments
• conjectured sequences (02): This list was last revised Jun 19 2008. It is surely incomplete, and by the time you look at them their status may have changed
• conjectured sequences (04): A008892, A098007, A063769 and other sequences related to the "aliquot divisors" problem
• conjectured sequences (05): A065083, A090315, A104885, A121091, A051346, A115016
• conjectured sequences (06): A075788, A075789, A075790, A075791, A083435, A086548, A087318, A087319, A088126, A090315, A092959
• conjectured sequences (07): A000373, A002149, A014595, A014596, A019450, A019459, A020999,
• conjectured sequences (08): A022495-A022498, A023054, A023108, A038552, A046125, A052131,
• conjectured sequences (09): A066426, A066435, A066450, A066510, A066746, A066817, A067579,
• conjectured sequences (10): A068591, A071071, A071887, A072023, A072326, A072540, A074980,
• conjectured sequences (11): A074981, A078693, A078754, A078869, A079098, A079398, A079611,
• conjectured sequences (12): A080131, A080133, A080134, A080761, A080762, A085508, A086058,
• conjectured sequences (13): A086748, A087092, A088910, A091305, A092372-A092382, A096340,
• conjectured sequences (14): A098860, A099118, A099119, A105233, A105600, A105601, A108795,
• conjectured sequences (15): A110000, A110108, A110172, A110222, A110223, A110312, A110356,
• conjectured sequences (16): A112647, A112799, A112826, A118278-A118285, A120414*, A121069,
• conjectured sequences (17): A121346, A121507, A121508, A119479, A009287, A090997, A090987,
• conjectured sequences (18): A004137, A048873, A056287, A059813, A059817, A059818, A065106, A065107, A081082, A084619, A090659, A099260, A117342,
• conjectured sequences (19): A000954, A000974, A007008 (?), A023189-A023193, A036462-A036463, A037018, A039508, A039515, A051522, A056636, A076853, A105170, A118371
• conjectured sequences (20): A080803, A124484, A093486, A140394, A007323
• conjugacy classes of groups: see groups, conjugacy classes
• Conn, Herb, sums involving 1/binomial(2n,n): A098830+A181334+A185585, A014307+A180875, A181374+A185672
• connect the dots: A187679
• connected regular graphs, see graphs, regular connected
• connecting 2n points: A006605
• Connell sequence: A001614*
• Consecutive:: A002308, A001223, A007610, A002307, A007513, A000236, A007667, A006889, A001033, A006055
• Consistent:: A005779, A001225
• constants, decimal expansion of: e A001113, gamma A001620, golden ratio A001622, pi A000796, silver mean A014176
• constants, Robbins constant: A073012
• constant sequences: see recurrence, linear, order 01, (1)
• constructing numbers from other numbers and the operations of addition, subtraction, etc: see under four 4's problem
• contexts: A047684
• CONTINUANT transform: see Transforms file
• continuant: A072347
• continued cotangents, sequences related to :
• continued cotangents:: A002668, A006266, A006268, A002667, A006267, A002666, A006269
• continued fractions , sequences related to :
• continued fractions (1):: A003285, A006466, A002951, A003417, A002852, A002211, A006083, A006839, A002947, A002948
• continued fractions (2):: A002946, A001685, A001686, A004200, A002665, A006271, A001684, A006085, A002945, A007515
• continued fractions (3):: A002937, A001112, A006464, A003118, A001203, A006273, A006270, A002949, A006467, A003117
• continued fractions (4):: A006221, A002950, A001204, A006084, A005483, A006518, A005147, A006272, A006274, A005146, A006465
• continued fractions for constants: (2/Pi)*Integral(sin(x)/x, x=0..Pi) (A036791), 0.12112111211112... A042974 (A056030) Product_{k>=1} (1-1/2^k) (A048652)
• continued fractions for constants: 2^(1/2) etc.: see below under: continued fractions for constants: square roots of 2, etc.
• continued fractions for constants: 2^(1/3) (A002945), 3^(1/3) (A002946), 4^(1/3) (A002947), 5^(1/3) (A002948), 6^(1/3) (A002949), 7^(1/3) (A005483), cube root of non-cubes 9+n to 100 (A010239, A010240, etc)
• continued fractions for constants: 2^(1/3)+sqrt(3) (A039923), BesselK(1,2)/BesselK(0,2) (A051149), Catalan's constant (A014538)
• continued fractions for constants: 2^(1/5) (A002950), 3^(1/5) (A003117), 4^(1/5) (A003118), 5^(1/5) (A002951)
• continued fractions for constants: Champernowne (A030167), Conway's (A014967), Copeland-Erdos (A030168), Euler's gamma (A002852)
• continued fractions for constants: e (A003417), e/2 (A006083), e/3 (A006084), e/4 (A006085), e^2 (A001204), e^3 (A058282)
• continued fractions for constants: e^Pi (A058287), e^pi - pi (A018939), (e+1)/3 (A028360), (e-1)/(e+1) (A016825), i^i = exp(-Pi/2) (A049007)
• continued fractions for constants: Fransen-Robinson (A046943), GAMMA(1/3) (A030651), GAMMA(2/3) (A030652), Integral(sin(x)/x, x=0..Pi) (A036790)
• continued fractions for constants: golden ratio (A000012)
• continued fractions for constants: Khintchine's (A002211), LambertW(1) (A030179), Lehmer's (A002665), Liouville's A012245 (A058304), Niven's (A033151)
• continued fractions for constants: ln(2+n) to ln(100) (A016730+n), ln((2n+1)/2) to ln(99/2) (A016528+n)
• continued fractions for constants: M(1,sqrt(2)) (A053003), 1 / M(1,sqrt(2)) (A053002), 1 +1/(e +1/(e^2 +..)) (A055972), 2*cos(2*Pi/7) (A039921)
• continued fractions for constants: Pi (A001203), 2 Pi (A058291), Pi/2 (A053300), Pi^2 (A058284), Pi^e (A058288), pi+e (A058651)
• continued fractions for constants: sqrt(2Pi) (A058293), sqrt(Pi) (A058280), sqrt(e) (A058281)
• continued fractions for constants: sqrt(3) - 1: A134451, A048878/A002530
• continued fractions for constants: sqrt(3): A040001, A002531/A002530
• continued fractions for constants: square roots of 17 (A040012), 18 (A040013), 19 (A010124), 20 (A040015), 21 (A010125), 22 (A010126), 23 (A010127), 24 (A040019), 26 (A040020), 27 (A040021), 28 (A040022), 29 (A010128),
• continued fractions for constants: square roots of 2 (A040000 and A001333/A000129), 3 (A040001), 5 (A040002), 6 (A040003), 7 (A010121), 8 (A040005), 10 (A040006), 11 (A040007), 12 (A040008), 13 (A010122), 14 (A010123), 15 (A040011),
• continued fractions for constants: square roots of 30 (A040024), 31 (A010129), 32 (A010130), 33 (A010131), 34 (A010132), 35 (A040029), 37 (A040030), 38 (A040031), 39 (A040032), 40 (A040033), 41 (A010133), 42 (A040035),
• continued fractions for constants: square roots of 43 (A010134), 44 (A040037), 45 (A010135), 46 (A010136), 47 (A010137), 48 (A040041), 50 (A040042), 51 (A040043), 52 (A010138), 53 (A010139), 54 (A010140), 55 (A010141),
• continued fractions for constants: square roots of 56 (A040048), 57 (A010142), 58 (A010143), 59 (A010144), 60 (A040052), 61 (A010145), 62 (A010146), 63 (A040055), 65 (A040056), 66 (A040057), 67 (A010147), 68 (A040059),
• continued fractions for constants: square roots of 69 (A010148), 70 (A010149), 71 (A010150), 72 (A040063), 73 (A010151), 74 (A010152), 75 (A010153), 76 (A010154), 77 (A010155), 78 (A010156), 79 (A010157), 80 (A040071),
• continued fractions for constants: square roots of 82 (A040072), 83 (A040073), 84 (A040074), 85 (A010158), 86 (A010159), 87 (A040077), 88 (A010160), 89 (A010161), 90 (A040080), 91 (A010162), 92 (A010163), 93 (A010164),
• continued fractions for constants: square roots of 94 (A010165), 95 (A010166), 96 (A010167), 97 (A010168), 98 (A010169), 99 (A010170), etc. (square roots of numbers bigger than 100 have been omitted)
• continued fractions for constants: tan(1) (A009001), tan(1/n) n=2 to 10 (A019423+n)
• continued fractions for constants: Trott's (A039663), Wallis' number (A058297), Wirsing's (A007515), prime constant (A051007), root of x^5-x-1 (A039922)
• continued fractions for constants: zeta(2) = Pi^2/6 (A013679), zeta(3) (A013631), zeta(4) (A013680)
• continued fractions, for sqrt(n), length of period: A003285*, A097853
• contours: A006021
• convenient numbers: A000926
• conventions in OEIS: see spelling and notation
• convergents , sequences related to :
• convergents (1):: A002363, A007676, A002356, A005663, A006279, A002355, A005664, A002358, A002795, A002353, A002360, A007509, A005484, A002364
• convergents (2):: A007677, A002351, A002357, A002354, A002794, A001517, A002485, A002352, A002359, A002361, A005668, A002362, A002119, A002486, A005485
• convert from base 10 to base n (or vice versa): A006937 A023372 A023378 A023383 A023387 A023390 A008557 A023392 A010692
• convert from decimal to binary: A006937, A006938
• convex lattice polygons: A063984, A070911, A089187
• convolution , sequences related to :
• convolution of natural numbers :: A007466
• convolution of triangular numbers :: A007465
• Convolutional codes:: A007223, A007224, A007225, A007227, A007226, A007228, A007229
• Convolutions:: A007477, A006013, A001938, A000385, A005798, A007556
• Conway , sequences related to :
• Conway group Con.0: A008924
• Conway sequences:: A007012, A004001, A005940, A005941, A003681, A007542, A007471, A003634, A007547, A003635
• Conway, sequences made famous by: A004001*, A005150*
• Conway-Guy rapidly growing sequence: A046859
• Conway-Guy sequence: A005318*, A006755, A005318, A006754, A006756, A006757
• coordination sequences, sequences related to :
• coordination sequences: for A_n root lattices: A005901, A008383, A008385, A008387, A008389, A008391, A008393, A008395, and A035837 through A035876
• coordination sequences: for B_n root lattices: A022144 through A022154, A107546 through A107571, and A108000 through A108011
• coordination sequences: for C_n root lattices: A010006, A019560 through A019564, and A035746 through A035787
• coordination sequences: for D_n root lattices: A005901, A007900, A008355, A008357, A008359, A008361, A008376, A008378, and A107506 through A107545
• Coprime sequences:: A003139, A003140, A002716, A002715

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Cor

• core partitions: t-core partitions for t=1..12: A177595 (triangle), A010054, A033687, A045831, A053723, A081622, A053724, A182803, A182804, A182805, A053691, A192061
• core sequences :
• core sequences, (01): A000001 (groups), A000002 (Kolakoski), A000004 (0's), A000005 (divisors), A000007 (0^n), A000009 (distinct partitions), A000010 (totient), A000012 (1's), A000014 (series-reduced trees), A000019 (prim. perm. groups), A000027 (natural numbers), A000029 (necklaces), A000031 (necklaces), A000032 (Lucas), A000035 (0101...)
• core sequences, (03): A000110 (Bell), A000111 (Euler), A000112 (posets), A000120 (1's in n), A000123 (binary partitions), A000124 (Lazy Caterer), A000129 (Pell), A000140 (Kendall-Mann), A000142 (n!), A000161 (partitions into 2 squares), A000166 (derangements), A000169 (labeled rooted trees)
• core sequences, (04): A000182 (tangent), A000203 (sigma), A000204 (Lucas), A000217 (triangular), A000219 (planar partitions), A000225 (2^n-1), A000244 (3^n), A000262 (sets of lists), A000272 (n^(n-2)), A000273 (directed graphs), A000290 (n^2), A000292 (tetrahedral)
• core sequences, (06): A000688 (abelian groups), A000720 (pi(n)), A000793 (Landau), A000796 (Pi), A000798 (quasi-orders or topologies), A000961 (prime powers), A000984 (binomial(2n,n)), A001003 (Schroeder's second problem), A001006 (Motzkin), A001037 (irreducible polynomials), A001045 (Jacobsthal), A001065 (sum of divisors), A001113 (e), A001147 (double factorials), A001157 (sum of squares of divisors), A001190 (Wedderburn-Etherington), A001221 (omega), A001222 (Omega), A001227 (odd divisors), A001285 (Thue-Morse), A001333 (sqrt(2))
• core sequences, (07): A001349 (connected graphs), A001358 (semiprimes), A001405 (binomial(n,n/2)), A001462 (Golomb), A001477 (integers), A001478 (negatives), A001481 (sums of 2 squares), A001489 (negatives), A001511 (ruler function), A001615 (sublattices), A001699 (binary trees), A001700 (binomial(2n+1, n+1)), A001764 (C3n,n)/(2n+1)), A001969 (evil), A002033 (perfect partitions), A002083 (Narayana-Zidek-Capell), A002106 (transitive perm. groups), A002110 (primorials), A002275 (repunits)
• core sequences, (08): A002322 (psi), A002378 (pronic), A002426 (central trinomial coefficients), A002487 (Stern), A002530 (sqrt(3)), A002531 (sqrt(3)), A002572 (binary rooted trees), A002620 (quarter-squares), A002654 (re: sums of squares), A002658 (3-trees), A002808 (composites), A003136 (Loeschian), A003418 (LCM), A003484 (Hurwitz-Radon), A004011 (D_4), A004018 (square lattice)
• core sequences, (09): A004526 (ints repeated), A005036 (dissections), A005100 (deficient), A005101 (abundant), A005117 (squarefree), A005130 (Robbins), A005230 (Stern), A005408 (odd), A005470 (planar graphs), A005588 (binary rooted trees), A005811 (runs in n), A005843 (even), A006318 (royal paths or Schroeder numbers), A006530 (largest prime factor)
• core sequences, (10): A006882 (n!!), A006894 (3-trees), A006966 (lattices), A007318 (Pascal's triangle), A008275 (Stirling 1), A008277 (Stirling 2), A008279 (permutations k at a time), A008292 (Eulerian), A008683 (Moebius), A010060 (Thue-Morse), A018252 (nonprimes), A020639 (smallest prime factor), A020652 (fractal), A020653 (fractal), A027641 (Bernoulli), A027642 (Bernoulli), A035099 (j_2), A038566 (fractal), A038567 (fractal), A038568 (fractal), A038569 (fractal), A049310 (Chebyshev)
• core sequences, (11): A070939 (binary length), A074206 (ordered factorizations), A104725 (complementing systems)
• corners: A006330, A006332, A006333, A006334
• correlations, sequences related to :
• correlations: A005434
• correlations: see also (1) A006606 A010559 A010560 A010561 A010562 A010563 A010564 A010565 A045690 A045691 A045692 A045693
• cos(nx), sequences related to cos(x) etc. :
• cos(nx): A028297 (table)
• cos(x):: A001250, A003701, A000795, A005766, A003703, A005647, A005046, A002084, A003709, A003728, A003710, A002085, A003711
• cosec(x), Taylor series for: A036280*/A036281*, A001896*/A001897*
• cosecant numbers: see cosec(x)
• cosh x / cos x, Taylor series for: A000795*, A005647
• cosh(x):: A002459, A003727, A003719, A003700, A003702
• Costas arrays: A008404*, A001440*, A001441*, A001442, A008403
• cot(x), Taylor series for: A002431*/A036278*
• cotangent numbers: A002431*/A036278*
• Cotes numbers: are called Cotesian numbers in OEIS
• Cotesian numbers, sequences related to :
• Cotesian numbers: A100640/A100641, A100640/A100641, A100643/A100644, A100645/A100646, A100647/A100648, A002176, A002177, A002178, A002179
• cototient(n): A051953
• counter moving puzzle: A004138
• counting numbers: A000027*
• covering codes: see codes, covering
• covering designs: see covering numbers
• covering numbers , sequences related to :
• covering numbers, C(v,k,t) is the smallest number of k-subsets of an n-set such that every t-subset is contained in at least one of the k-subsets
• covering numbers: (1) A011975 A011976 A011977 A011978 A011979 A011980 A011981 A011982 A011983 A011984 A011985 A011986
• covering numbers: (2) A011987 A011988 A011989 A011990 A066009 A066010 A066011 A066019 A066040 A066041 A066137 A066140
• covering numbers: (3) A066225 A066701
• covering numbers: 2-covers: A002620, A002718, A020554, A014500, A057963, A060053, A146563
• covering numbers: on-line tables of: La Jolla Repository of Coverings
• covering radius of codes: see codes, covering
• covers of an n-set , sequences related to :
• covers of an n-set (1): A000371*, A003465*, A007537*, A035348*, A046165*, A049055*, A049056*, A055080*
• covers of an n-set (2): A005771, A005744, A005745, A005746, A005747, A005748, A005783, A005784, A005785, A005786, A055066, A003465
• covers of an n-set (3): A003467, A003468, A003469, A003486
• Coxeter-Todd 12-dimensional lattice: see K12 lattice
• Critical exponents:: A007181, A007180
• Croatian: A056597
• Croatian: see also Index entries for sequences related to number of letters in n
• crossing , sequences related to :
• crossing number, rectlinear: A014540
• crossing numbers of graphs: A000241*, A007333, A014540, A030179
• crystal ball sequences , sequences related to :
• crystal ball sequences: (1) A001360 A001361 A001845 A001846 A001847 A001848 A001849 A003215 A005891 A005902 A007202 A007204
• crystal ball sequences: (2) A007904 A008349 A008356 A008358 A008360 A008362 A008377 A008379 A008384 A008386 A008388 A008390
• crystal ball sequences: (3) A008392 A008394 A008396 A008398 A008400 A008402 A008417 A008419 A008421 A008577 A008580 A008922
• crystal ball sequences: (4) A010025
• Crystal classes:: A004028, A004027, A004032, A004031
• crystallographic groups: see groups, crystallographic
• crystobalite lattice: A005392

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Cu

• cube , sequences related to "cube" :
• cube numbers, centered: A005898*
• Cube roots:: A002580, A002581, A005480, A005481, A005486, A005482
• Cube with no 3 points collinear:: A003142
• cube, coloring a: see coloring a cube
• cube, triangulations of: A019502, A019503, A019504, A166932
• cube, truncated: see truncated cube
• cube-free , sequences related to :
• cube-free divisors: A073184
• cube-free numbers: A004709*, complement is A046099
• cube-free word: A010060*
• cubes, Latin, see Latin squares
• cubes, not the sum of: A001476, A022555, A022561, A022566, A057903, A057904, A057905, A057906, A057907
• cubes, not the sum of: see also A031980, A031981, A022550, A014156, A022557, A022552, A014158
• cubes: A000578*
• Cubes:: A002376, A005897, A006529
• Cubic curves:: A005782
• Cubic fields:: A005472, A006832
• cubic graphs, see graphs, trivalent
• cubic lattice , sequences related to :
• cubic lattice, (1):: A003196, A003193, A002929, A005876, A003301, A007217, A003283, A003490, A006837, A006804, A002891, A006810, A002902, A001393
• cubic lattice, (2):: A006783, A001409, A002916, A002915, A005877, A000759, A005572, A002917, A007287, A005573, A005875, A006779, A003496, A006780
• cubic lattice, (3):: A003211, A002934, A003279, A002913, A001412, A006819, A007193, A007194, A002918, A002170, A002896, A003299, A003282, A000605
• cubic lattice, (4):: A006193, A004013, A005878, A000760, A002169, A003302, A003280, A003303, A003207, A003284, A001408, A004015, A002926, A000761
• cubic lattice, (5):: A000762, A005570, A003300, A002165, A003298, A003281, A001413, A005571
• cubic lattice, coordination sequence for: A005899*
• cubic lattice, polygons on: A001413*
• cubic lattice, theta series of: A005875*
• cubic lattice, walks on: A001412*
• cuboctahedral numbers: A005901, A005902
• Cullen , sequences related to :
• Cullen numbers, n*2^n + 1: A002064*
• Cullen primes: see primes, Cullen
• curling number , sequences related to :
• curling number conjecture: A094004*, A116909, A161223
• curling number transform: A090822, A093914, A093921, A094840, A094916
• curves, rational plane: A013587
• cusp forms, sequences related to :
• cusp forms, for full modular group, of weights 12, 16, 18, 20, 22, 26: A000594, A027364, A037944, A037945, A037946, A037947
• cusp forms: (1) A002288 A002408 A003784 A003785 A006354 A006571 A007331 A007332 A007653 A013953 A013975
• cusp forms: (2) A027859 A035118 A035150 A035190 A037948 A037949 A037950 A054891
• cusp forms: (3) A055749 A055978 A056945 A056947
• cusps, number of: A000114, A029936
• cutting center: A002887
• cutting numbers: A002888

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Cy

• cycle index , sequences related to :
• cycle index in Maple: see A036658;
• cycle index of representations of groups: A000292 (D_6); A002817 (D_8); A006008 (A_4); A000389, A063843 (S_5); A000543, A047780, A060530 (group of cube)
• cycle index of symmetric group S_n for n = 1..27 in Maple: see link in A000142;
• Cycles in x -> x^2 mod n: A023153
• cyclic group: see groups, cyclic
• cyclic numbers: A003277*, A001914, A001913
• Cyclic:: A002885, A007039, A006205, A007040, A006609, A002956, A005666, A006204, A007687, A007688, A005665, A000804, A000805
• cyclotomic cosets: A064285, A064286, A064287
• cyclotomic fields, sequences related to :
• cyclotomic fields, class numbers of: A000927 (first factor h-), A055513 (class number h), A061653, A035115
• cyclotomic fields, with class number 1: A005848
• cyclotomic polynomials, sequences related to :
• cyclotomic polynomials, largest coefficient of: A013594*, A046887
• cyclotomic polynomials, positions of coefficients, sequences related to :
• cyclotomic polynomials, positions of coefficients: A063696, A063697, A063698, A063699, A063670, A063671
• cyclotomic polynomials, triangle of coefficients of: A013595*, A013596*
• cyclotomic polynomials, values at phi , sequences related to :
• cyclotomic polynomials, values at phi = (sqrt(5)+1)/2: A063703, A063705, A063707
• cyclotomic polynomials, values at x = integers, sequences related to :
• cyclotomic polynomials, values at x = -1 to -13: A020513, A020501, A020502, A020503, A020504, A020505, A020506, A020507, A020508, A020509, A020510, A020511, A020512
• cyclotomic polynomials, values at x = 1 to 13: A020500, A019320, A019321, A019322, A019323, A019324, A019325, A019326, A019327, A019328, A019329, A019330, A019331
• cyclotomic polynomials, values at x = 2^n: A070526, A070527
• cyclotomic polynomials, values at x = EulerPhi(n): A070524, A070525
• cyclotomic polynomials, values at x = n: A070518, A070519, A070520, A070521
• cyclotomic polynomials, values at x = prime(n): A070522, A070523
• cyclotomic polynomials, values of (1): A000027 A002061 A002522 A053699 A053716 A002523 A060883 A060884 A060885 A060886 A060887
• cyclotomic polynomials, values of (2): A060888 A060889 A060890 A060891 A060892 A060893 A060894 A060895 A060896
• cylinder, kings on a: A002493
• Czech: see also Index entries for sequences related to number of letters in n
• C[n,k]: binomial coefficient n-choose-k (see A007318)
• C_n lattice: coordination sequence for: see A010006

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Da

• d(n), number of divisors: A000005*
• d(n), number of divisors: records: A002183, A002182
• D3 lattice: see f.c.c. lattice
• D3* lattice: see b.c.c. lattice
• D4 lattice, sequences related to :
• D4 lattice, coordination sequence for: A007900*, A010079
• D4 lattice, crystal ball sequence for: A007204*
• D4 lattice, theta series of: A004011*, A005879, A005880, A046949, A108092 (fourth root)
• D4 lattice: see also A008369 A008658 A008659 A008660 A008661 A008662 A010367 A010561 A010562 A010565 A028977 A031360 A033692 A033696 A045771 A117216
• D5 lattice, theta series of: A005930*
• DAGs: A003087* (labeled), A003024 (labeled)
• Danish: A003078
• Danish: see also Index entries for sequences related to number of letters in n
• dartboard: see darts board
• darts board: A003833, A008575, A104158, A104159
• dates: see calendar
• Davenport-Schinzel numbers:: A005004, A005005, A002004, A005006, A005280, A005281
• David, J.-P., A118131
• Dawson's chess: A002187*
• days: see calendar
• de Bruijn sequences: A080679, A058342, A083570, A135472, A144569, A166315, A166316

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_De

• decagon is spelled 10-gon in the OEIS
• deceptive plots, sequences related to :
• deceptive plots: A014612, A034598, A034415, A001358 (semiprimes)
• decimal encoding of prime factorization: A037276, A067599, A080670
• Decimal equivalent:: A003100, A003188
• decimal expansion , sequences related to :
• decimal expansion contains no 0's: A007377, A007496
• decimal expansion of square roots: see under: square root(s)
• decimal expansions (1):: A002117, A007493, A002163, A002392, A007377, A007496, A005532, A006891, A002580, A007507, A002210, A001113, A003678, A000796
• decimal expansions (2):: A005533, A005600, A005596, A006834, A005534, A002193, A002285, A002581, A007525, A006890, A005531, A003671, A003672, A002389
• decimal expansions (3):: A001620, A005480, A007450, A001622, A005597, A003676, A002162, A005481, A003677, A003673, A002194, A002161, A005486, A005601
• decimal expansions (4):: A006833, A003675, A005482, A006752, A002391, A002388
• decimal expansions - see also under individual constants (e, A001113; Pi, A000796; etc.)
• Decompositions:: A002850, A002126, A001031, A002372
• Dedekind , sequences related to :
• Dedekind psi function: A001615
• Dedekind psi function, higher order : A065958, A065959, A065960
• Dedekind's function eta(x): A010815*, A007706*
• Dedekind's problem (or numbers): A000372*, A003182*, A007153*
• deficiency , sequences related to :
• deficiency: A033879*, A033880, A033883
• deficient numbers: A005100*, A006039
• Deficit:: A005675
• Definite integrals:: A002571, A002570
• Degree sequences:: A007020, A005155
• degrees of irreducible representations, sequences related to :
• degrees of irreducible representations: (1) A003875*, A003869, A003870, A003871, A003872, A003873, A003874, A003876, A003877, A059796
• degrees of irreducible representations: (2) A079685, A108942, A003880, A152465, A152481, A003884, A152486, A003856, ...
• Delannoy numbers, sequences related to :
• Delannoy numbers, central: A001850*
• Delannoy numbers, table of: A008288*
• Delaunay (or Delone) decompositions: A070881, A070882
• Deleham's operator DELTA: A084938
• DELTA operator: A084938
• DEMICHEL, Patrick, sequences received in May 1996 from: A012001-A013573 (except for a few gaps). See especially A013538.
• Demlo numbers, sequences related to :
• Demlo numbers: A002477*
• Demlo numbers: see also (1) A002275 A063750 A075411 A075412 A075413 A075414 A075415 A075416 A075417 A080150 A080151 A080160
• denumerants: A000115*
• derangements: A000166*
• derivative of n: A038554*, A003415*
• Derivatives:: A005168, A005727, A003262
• descending dungeons: see dungeons
• describe n: see "say what you see"
• describe previous term!: A005150*
• describe previous term: see "say what you see"
• Describe previous term:: A005341, A006751, A006715, A006919, A007651, A006711
• designs, covering: see covering numbers
• designs, spherical: see spherical designs
• destinies: see destiny
• destiny: if a map f is applied repeatedly to n, the destiny of n is the smallest number in the resulting trajectory
• destiny: see AA161590, A161592, A161593
• determinants, sequences related to :
• determinants:: A003116, A002771, A002772, A001332, A002776, A002204, A006377, A005249

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Di

• Diagonal length function:: A006264
• diagonal sequences, sequences related to :
• diagonal sequences: A051070 = A_n(n) respecting the offset, A091967 = A_n(n) ignoring offset, A107357 = 1 + A_n(n) respecting offset, A102288 = 1 + A_n(n) ignoring offset
• diagonal sequences: incorrect versions: A031135, A037181
• diagrams, circular: A007474
• Diagrams:: A004300, A000699
• Diameters:: A007285
• diamond lattice, sequences related to :
• diamond lattice, theta series of: A005925*
• diamond lattice:: A005926, A002930, A001395, A005925, A003195, A007216, A005927, A003212, A003119, A001394, A002923, A001397, A001396, A002895, A002922, A003208, A003220, A001398
• difference between next prime and previous prime for terms of various sequences: see under previous prime
• Difference equations:: A005921, A005923, A005922, A005924
• difference of two cubes , sequences related to :
• difference of two cubes (01): A014439 A014440 A014441 A034179 A038593 A038594 A038595 A038596 A038597 A038598 A038632 A038673
• difference of two cubes (02): A038808 A038847 A038848 A038849 A038850 A038851 A038852 A038853 A038854 A038855 A038856 A038857
• difference of two cubes (03): A038858 A038859 A038860 A038861 A038862 A038863 A038864 A051393 A085367 A085377 A086121 A098110
• difference of two cubes (04): A125063 A129965 A087786 A045980 A085479 A152043
• differences = complement: A005228*, A030124
• differences of 0, sequences related to :
• differences of 0: A000919 A000920 A001117 A001118 A002051 A002456 A019538
• Differences of reciprocals of unity:: A000424, A001240, A001236, A001237, A001241, A001238, A001242
• differences of two cubes, see difference of two cubes
• differences of zero, see differences of 0
• Differences periodic:: A002081
• differential equations, sequences related to :
• differential equations:: A000997, A000995, A000994, A000996, A005443, A000998, A005444, A005442, A005445
• differential structures: A001676*
• digital , sequences related to digital root, sum, etc. :
• digital root: A010888*
• digital root: number of n-digit numbers with nonzero multiplicative digital root A051812, A051813, A051814, A051815, A051816, A051817, A051818, A051819, A051820
• digital root: number of n-digit numbers with zero multiplicative digital root A051821, A051822, A051823, A051824, A051825, A051826, A051827, A051828, A051829
• digital root: numbers with multiplicative digital root A034048, A034049, A034050, A034051, A034052, A034053, A034054, A034055, A034056
• digital root: numbers with nonzero multiplicative digital root A051803, A051804, A051805, A051806, A051807, A051808, A051809, A051810, A051811
• digital sum: A007953*
• digits, final: see final digits
• digits, last: see final digits
• digits, sums of squares of: A003132
• digraphs (or directed graphs), sequences related to :
• digraphs : A000273* (unlabeled), A053763* (labeled)
• digraphs, 2-regular, A007107, A007108
• digraphs, acyclic: A003087 (unlabeled), A003024 (labeled), A082402 (connected labeled)
• digraphs, acyclic: by number of out-points: A003025, A003026
• digraphs, connected: A003085*
• digraphs, Eulerian, A007080, A007105
• digraphs, mating, A006023, A006025
• digraphs, regular, A005641, A005642
• digraphs, self-complementary, A003086
• digraphs, self-converse, A002499
• digraphs, semi-regular, A003286, A005535
• digraphs, strongly connected, A003030 (labeled), A035512 (unlabeled); see also A054946 (tournaments)
• digraphs, subgraphs of, A005014, A005016, A005327, A005328, A005329, A005330, A005331, A005332
• digraphs, switching classes of: A006536*
• digraphs, transitive: A000798* (labeled), A001930* (unlabeled)
• digraphs, triangle of numbers of: (1) A052296 A054733 A057270 A057271 A057272 A057273 A057274 A057275 A057276 A057277 A057278 A057279
• digraphs, triangle of numbers of: (2) A058876
• digraphs, unilateral, A003029, A003088
• digraphs, weakly connected, A003027
• digraphs, weakly distance-regular: A057560
• digraphs, with same converse as complement, A003069
• digsum: A007953
• Dimensions:: A007478, A007473, A007182, A006973, A007293, A003038, A001776
• Diophantine equations, x1 x2 + x2 x3 + ... + xk x{k+1} = n: A000005, A065608, A002133, A189835, A191822, A191832
• Diophantine equations:: A006452, A006451, A006454
• Dirac delta function: A000007*
• directed graphs, see digraphs
• Diregular:: A005642, A005641
• Dirichlet divisor problem: A006218
• Dirichlet series: sequences related to :
• Dirichlet series: PARI examples: (01) A031358 A145390
• Dirichlet series: PARI examples: (02) A000005 A000082 A000086 A000203 A000377 A001157 A001227 A001615 A002131 A002654 A003958 A003959
• Dirichlet series: PARI examples: (03) A007425 A007427 A007429 A007430 A007431 A008683 A003421 A003420 A003419 A002558 A003521
• discordant, sequences related to :
• discordant:: A002634, A000183, A002633, A000270, A000380, A000388, A000561, A000440, A000562, A000470, A000563, A000476, A000492, A000564, A000500, A000565
• discriminants , sequences related to :
• discriminants of imaginary quadratic fields with class number (negated): (1) 1: A014602, 2: A014603, 3: A006203, 4: A013658, 5: A046002, 6: A046003, 7: A046004, 8: A046005, 9: A046006, 10: A046007, 11: A046008, 12: A046009, 13: A046010,
• discriminants of imaginary quadratic fields with class number (negated): (2) 14: A046011, 15: A046012, 16: A046013, 17: A046014, 18: A046015, 19: A046016, 21: A046018, 23: A046020, 24: A048925, 25: A056987,
• discriminants of real quadratic fields by class nunber: A050950-A050969, A051962-A051965
• Discriminants:: A006555, A006554
• Discriminants:: of fields, A003171, A003657, A003644, A003658, A003656, A003246, A003653, A006832, A002769
• Discriminants:: of polynomials, A004124, A007701, A001782, A006312
• Discriminants:: of quadratic forms, A003655
• Disjunctive:: A003039, A005616, A005739
• Disk:: A005497, A002710, A002712, A004305, A001683, A002713, A005495, A002711, A002709, A005499, A005498
• dismal arithmetic , sequences related to :
• dismal arithmetic : A087061 (addition), A087062 (multiplication, Maple code)
• dismal arithmetic, base 2: A067398*, A190820, A191342 (squares), A067139 (primes), A048888
• dismal arithmetic, base 3: A171396 (squares), A130206, A170806 and A191366 (primes)
• dismal arithmetic, factorials: A189788
• dismal arithmetic, in other bases, primes: A067139 A169912 A171000 A130206 A170806 A171017 A171122 A171123 A171124 A171125 A171133 A171143 A171144 A171167 A171168 A171169 A171221 A087097*, A087636, A087638, A084666
• dismal arithmetic, in other bases, squares: A067398 A171222 A171234 A171396 A171458 A171460 A171558 A171564 A171578 A171591 A171594 A171596 A171635 A171644 A171679 A171717 A087019
• dismal arithmetic, in other bases, triangular numbers: A003817 A171230 A171438 A171446 A171464 A171483 A171572 A171573 A171592 A171593 A171597 A171610 A171649 A171678 A171722 A171723 A087052
• dismal arithmetic, partitions: A054244, A087079
• dismal arithmetic, perfect numbers: see comment in A087416
• dismal arithmetic, primes in various bases: A067139 A130206 A170806 A171017 A171122 A171123 A171124 A171125 A171133 A171143 A171144 A171167 A171168 A171169 A171221 A171750 A171752
• dismal arithmetic, primes: A087097*, A087636, A087638, A084666
• dismal arithmetic, square roots: A202082, A202174
• dismal arithmetic, squares in various bases: A067398 A171222 A171234 A171396 A171458 A171460 A171558 A171564 A171578 A171591 A171594 A171596 A171635 A171644 A171679 A171717
• dismal arithmetic, sum of divisors in various bases: A188548, A190632, A087416
• dismal arithmetic: A087019 (squares), A087052 (triangulars), A087036 (cubes), A087051 (4th powers), A087028 and A087029 (divisors), A087079 (partitions), A087121, A087416, A087082 and A087083 (sum of divisors), A162672 or A171818 ("even" numbers)
• dissections, sequences related to :
• dissections, of a polygon (1):: A001004, A003455, A000063, A005036, A003456, A000131, A003450, A003454, A003452, A000150, A005034, A003447, A005040, A003445
• dissections, of a polygon (2):: A003442, A005038, A000207, A003453, A003449, A003441, A001002, A003448, A005419, A003443, A003451, A003444, A005035, A002293
• dissections, of a polygon (3):: A005039, A005033, A005037, A002295, A002296, A002055, A002056, A007160
• dissections, of rectangles: A049021*
• dissections, of regular polygons to regular polygons: A110000, A110312, A110316
• dissections: A000207*
• Dissections:: of a ball, A001763, A001762
• Dissections:: of a disk, A001761
• distinct prime factors, sequences related to :
• distinct prime factors: at least 1: A000027 2: A024619 3: A000977
• distinct prime factors: at most 1: A000961 2: A070915
• distinct prime factors: exactly 1: A000961 2: A007774 3: A033992 4: A033993 5: A051270 6: A074969
• distinct prime factors: number of A001221
• distinct prime factors: table of: A125666
• Distribution problem:: A002018
• divergent series: A002387, A092324, A092267, A092753
• divisibility sequences , sequences related to :
• divisibility sequences ( 1): A000522 A001339 A002248 A002452 A003757 A005013 A005120 A005178 A006238 A006720 A006769 A007434
• divisibility sequences ( 2): A039834 A051138 A058939 A059928 A060478 A082030 A086892 A087612 A087612 A095000 A095177 A105309
• divisibility sequences ( 3): A115000 A116201 A127595 A133394 A138573 A141827 A141828 A143699 A152090 A140824
• divisibility sequences, 3rd order: A003690, Number of spanning trees in K_3 X P_n
• divisibility sequences, 3rd order: A004146, Alternate Lucas numbers - 2
• divisibility sequences, 3rd order: A005386, Area of n-th triple of squares around a triangle
• divisibility sequences, 3rd order: A006253, Number of perfect matchings (or domino tilings) in C_4 X P_n
• divisibility sequences, 3rd order: A007654, Numbers n such that standard deviation of 1,...,n is an integer
• divisibility sequences, 4th order: A001350, Associated Mersenne numbers
• divisibility sequences, 4th order: A002248, Number of points on y^2+xyA003773, Number of spanning trees in K_4 X P_n
• divisibility sequences, 4th order: A006238, Complexity of (or spanning trees in) a 3 X n grid
• divisibility sequences, 6th order: A001351, Associated Mersenne numbers
• divisibility sequences, 6th order: A001945, a(n+6) A003755, Number of spanning trees in S_4 X P_n
• divisibility sequences, 6th order: A005120, a(n+6) A006235, Complexity of doubled cycle
• divisibility sequences, 8th order: A005822, Number of spanning trees in third power of cycle
• divisibility sequences, 8th order: A028468, Number of perfect matchings in graph P_{6} X P_{n}
• divisibility sequences: A001542 = 2 * (A001109)
• divisibility sequences: A003645(n)=2^n*Cat(n+1)=A000079(n)*A000108(n+1)
• divisibility sequences: A003690 = 3 * (A004254)^2
• divisibility sequences: A003696 = (A001353) * (A161158)
• divisibility sequences: A003733 = 5 * (A143699)^2
• divisibility sequences: A003739 = 5 * (A001906)^2 * (A161159)
• divisibility sequences: A003745 = 3 * 5^2 * (A004254) * (A004187)^3
• divisibility sequences: A003751 = 5^3 * (A004187)^4
• divisibility sequences: A003753 = 2^2 * (A001109) * (A001353)^2 = 2 * (A001542) * (A001353)^2
• divisibility sequences: A003755 = (A001109) * (A001906)^2
• divisibility sequences: A003761 = (A001906) * (A004254) * (A001109)
• divisibility sequences: A003767 = 2^3 * (A001353) * (A001109)^2
• divisibility sequences: A003773 = 2 * (A001542)^3 = 2^4 * (A001109)^3
• divisibility sequences: A005159(n)=3^n*Cat(n), that is, A005159=A000244*A000108
• divisibility sequences: A005319 = 4*A001109
• divisibility sequences: A092136 = (A004187) * (A001906)^3
• divisibility sequences: A106328 = 3*A001109
• divisibility sequences: A139400 = (A001906) * (A001353) * (A004254) * (A161498)
• divisible by each digit: A002796*, A034838*, A034709
• divisible by product of digits: A007602*
• divisor chains: A067957*, A093313, A093314, A093315, A094097, A094098, A094099
• divisors, sequences related to :
• divisors, aliquot: A032741*, A001065* (sum of), A027751 (list of)
• divisors, anti: A066272
• divisors, average of, A003601, A006218
• divisors, inverse to d(n), A005179
• divisors, isolated: A133779 (triangle), A132881 (number)
• divisors, largest prime power: A053585
• divisors, largest prime: A006530*
• divisors, largest: A032742*
• divisors, list of: A027750
• divisors, middle: A067742*, A071090
• divisors, nontrivial (or proper): A070824 (divisors of n in the range 1 < d < n), A137510
• divisors, nontrivial: often used incorrectly to refer to aliquot divisors (see divisors, aliquot)
• divisors, number of (d(n)): see also (1): A002324, A002175, A002183, A002131, A005179 (inverse function to d(n)), A002132, A002133, A002134, A003680, A005237, A002130, A002191, A002127, A002128
• divisors, number of (d(n)): see also (2): A002129, A002173, A000441, A002961, A000477, A000499
• divisors, number of (denoted by d(n)): A000005*
• divisors, numbers having 11-20: A030629, A030630, A030631, A030632, A030633, A030634, A030635, A030636, A030637, A030638
• divisors, numbers having 2-10: A000040, A001248, A030513, A030514, A030515, A030516, A030626, A030627, A030628
• divisors, numbers having 21-30: A137484, A137485, A137486, A137487, A137488, A137489, A137490, A137491, A137492, A137493
• divisors, of 10^k-1 or 10^k or 10^k+1: (01) k=2 A018283, k=3 A018766 A018767 A018768, k=4 A027894 A133020,
• divisors, of 10^k-1 or 10^k or 10^k+1: (02) k=5 A027893, k=6 A027892 A159765, k=7 A027891, k=8 A027890,
• divisors, of 10^k-1 or 10^k or 10^k+1: (03) k=9 A027889 A027901, k=10 A027895 A027900, k=11 A027896 A027899,
• divisors, of 10^k-1 or 10^k or 10^k+1: (04) k=12 A027897 A027898, k=13 A109933, k=14 A106305, k=15 A111117,
• divisors, of 10^k-1 or 10^k or 10^k+1: (05) k=16 A111211, k=17 A113116, k=18 A113522
• divisors, of 2^k-1: (01) k=6 A018267, k=8 A018358, k=10 A003523, k=12 A003524, k=14 A003525, k=15 A003526,
• divisors, of 2^k-1: (02) k=16 A003527, k=18 A003528, k=20 A003529, k=21 A003530, k=22 A003531, k=24 A003532,
• divisors, of 2^k-1: (03) k=25 A003533, k=26 A003534, k=27 A003535, k=28 A003536, k=29 A003537, k=30 A003538,
• divisors, of 2^k-1: (04) k=32 A004729, k=33 A003540, k=34 A003541, k=35 A003542, k=36 A003543, k=38 A003544,
• divisors, of 2^k-1: (05) k=39 A003545, k=40 A003546, k=42 A003547, k=43 A003548, k=44 A003549, k=45 A003550,
• divisors, of numbers in range 200..299: (02) A018340, A018341, A018342, A018343, A018344, A018345, A018346, A018347,
• divisors, of numbers in range 200..299: (03) A018348, A018349, A018350, A018351, A018352, A018353, A018354, A018355,
• divisors, of numbers in range 200..299: (04) A018356, A018357, A018358, A018359, A018360, A018361, A018362, A018363,
• divisors, of numbers in range 200..299: (05) A018364, A018365, A018366, A018367, A018368, A018369, A018370, A018371,
• divisors, of numbers in range 200..299: (06) A018372, A018373, A018374, A018375, A018376, A018377, A018378, A018379,
• divisors, of numbers in range 200..299: (07) A018380, A018381
• divisors, of numbers in range 300..399: (01) A018382, A018383, A018384, A018385, A018386, A018387, A018388, A018389,
• divisors, of numbers in range 300..399: (02) A018390, A018391, A018392, A018393, A018394, A018395, A018396, A018397,
• divisors, of numbers in range 300..399: (03) A018398, A018399, A018400, A018401, A018402, A018403, A018404, A018405,
• divisors, of numbers in range 300..399: (04) A018406, A018407, A018408, A018409, A018410, A018411, A018412, A018413,
• divisors, of numbers in range 300..399: (05) A018414, A018415, A018416, A018417, A018418, A018419, A018420, A018421,
• divisors, of numbers in range 300..399: (06) A018422, A018423, A018424, A018425, A018426, A018427, A018428, A018429,
• divisors, of numbers in range 300..399: (07) A018430, A018431, A018432
• divisors, of numbers in range 400..499: (01) A018433, A018434, A018435, A018436, A018437, A018438, A018439, A018440,
• divisors, of numbers in range 400..499: (02) A018441, A018442, A018443, A018444, A018445, A018446, A018447, A018448,
• divisors, of numbers in range 400..499: (03) A018449, A018450, A018451, A018452, A018453, A018454, A018455, A018456,
• divisors, of numbers in range 400..499: (04) A018457, A018458, A018459, A018460, A018461, A018462, A018463, A018464,
• divisors, of numbers in range 400..499: (05) A018465, A018466, A018467, A018468, A018469, A018470, A018471, A018472,
• divisors, of numbers in range 400..499: (06) A018473, A018474, A018475, A018476, A018477, A018478, A018479, A018480,
• divisors, of numbers in range 400..499: (07) A018481, A018482, A018483, A018484, A018485, A018486, A018487, A018488
• divisors, of numbers in range 500..599: (01) A018489, A018490, A018491, A018492, A018493, A018494, A018495, A018496,
• divisors, of numbers in range 500..599: (02) A018497, A018498, A018499, A018500, A018501, A018502, A018503, A018504,
• divisors, of numbers in range 500..599: (03) A018505, A018506, A018507, A018508, A018509, A018510, A018511, A018512,
• divisors, of numbers in range 500..599: (04) A018513, A018514, A018515, A018516, A018517, A018518, A018519, A018520,
• divisors, of numbers in range 500..599: (05) A018521, A018522, A018523, A018524, A018525, A018526, A018527, A018528,
• divisors, of numbers in range 500..599: (06) A018529, A018530, A018531, A018532, A018533, A018534, A018535, A018536,
• divisors, of numbers in range 500..599: (07) A018537, A018538, A018539, A018540
• divisors, of numbers in range 600..699: (01) A018541, A018542, A018543, A018544, A018545, A018546, A018547, A018548,
• divisors, of numbers in range 600..699: (02) A018549, A018550, A018551, A018552, A018553, A018554, A018555, A018556,
• divisors, of numbers in range 600..699: (03) A018557, A018558, A018559, A018560, A018561, A018562, A018563, A018564,
• divisors, of numbers in range 600..699: (04) A018565, A018566, A018567, A018568, A018569, A018570, A018571, A018572,
• divisors, of numbers in range 600..699: (05) A018573, A018574, A018575, A018576, A018577, A018578, A018579, A018580,
• divisors, of numbers in range 600..699: (06) A018581, A018582, A018583, A018584, A018585, A018586, A018587, A018588,
• divisors, of numbers in range 600..699: (07) A018589, A018590, A018591, A018592, A018593, A018594, A018595, A018596, A018597
• divisors, of numbers in range 700..799: (01) A018598, A018599, A018600, A018601, A018602, A018603, A018604, A018605,
• divisors, of numbers in range 700..799: (02) A018606, A018607, A018608, A018609, A018610, A018611, A018612, A018613,
• divisors, of numbers in range 700..799: (03) A018614, A018615, A018616, A018617, A018618, A018619, A018620, A018621,
• divisors, of numbers in range 700..799: (04) A018622, A018623, A018624, A018625, A018626, A018627, A018628, A018629,
• divisors, of numbers in range 700..799: (05) A018630, A018631, A018632, A018633, A018634, A018635, A018636, A018637,
• divisors, of numbers in range 700..799: (06) A018638, A018639, A018640, A018641, A018642, A018643, A018644, A018645,
• divisors, of numbers in range 700..799: (07) A018646, A018647, A018648, A018649, A018650, A018651, A018652
• divisors, of numbers in range 800..899 (01) A018653, A018654, A018655, A018656, A018657, A018658, A018659, A018660,
• divisors, of numbers in range 800..899 (02) A018661, A018662, A018663, A018664, A018665, A018666, A018667, A018668,
• divisors, of numbers in range 800..899 (03) A018669, A018670, A018671, A018672, A018673, A018674, A018675, A018676,
• divisors, of numbers in range 800..899 (04) A018677, A018678, A018679, A018680, A018681, A018682, A018683, A018684,
• divisors, of numbers in range 800..899 (05) A018685, A018686, A018687, A018688, A018689, A018690, A018691, A018692,
• divisors, of numbers in range 800..899 (06) A018693, A018694, A018695, A018696, A018697, A018698, A018699, A018700,
• divisors, of numbers in range 800..899 (07) A018701, A018702, A018703, A018704, A018705, A018706, A018707, A018708, A018709
• divisors, of numbers in range 900..999 (01) A018710, A018711, A018712, A018713, A018714, A018715, A018716, A018717,
• divisors, of numbers in range 900..999 (02) A018718, A018719, A018720, A018721, A018722, A018723, A018724, A018725,
• divisors, of numbers in range 900..999 (03) A018726, A018727, A018728, A018729, A018730, A018731, A018732, A018733,
• divisors, of numbers in range 900..999 (04) A018734, A018735, A018736, A018737, A018738, A018739, A018740, A018741,
• divisors, of numbers in range 900..999 (05) A018742, A018743, A018744, A018745, A018746, A018747, A018748, A018749,
• divisors, of numbers in range 900..999 (06) A018750, A018751, A018752, A018753, A018754, A018755, A018756, A018757,
• divisors, of numbers in range 900..999 (07) A018758, A018759, A018760, A018761, A018762, A018763, A018764, A018765, A018766
• divisors, of numbers not less than 10^16: (01) 10^17-1 A113116, 10^18-1 A113522,
• divisors, of numbers not less than 10^16: (02) 2^60-1 A081110,
• divisors, of numbers not less than 10^16: (03) 24! A174228,
• divisors, of numbers not less than 10^16: (04) order of Monster group A174670, decreasing A174671,
• divisors, of numbers not less than 10^16: (05) of 2^1092?1 A177855
• divisors, of perfect numbers (as binary): A135652, [A138823], A135653, [A138824], A135654, [A138825], A135655
• divisors, of perfect numbers: (01) 28 A018254, [496/2 A018355], 496 A018487,
• divisors, of perfect numbers: (02) [8128/2 A138814], 8128 A133024, [33550336/2 A138815], 33550336 A133025
• divisors, of primorials: 5# A018255, 7# A018336, 11# A087005, 13# A087006, 17# A087007, 19# A087008
• divisors, of squares: (01) 6^2 A018256, 10^2 A018283, 12^2 A018302, 14^2 A018330, 15^2 A018342, 18^2 A018393,
• divisors, of squares: (02) 20^2 A018433, 21^2 A018458, 22^2 A018480, 24^2 A018528, 26^2 A018587, 28^2 A018645,
• divisors, of squares: (03) 30^2 A018710, 60^2 A035303, 100^2 A133020, 216^2 A114334, 1000^2 A159765
• divisors, of x^n-1: A107748, A114536, A117215, A117342, A117343
• divisors, proper (or nontrivial): A070824 (divisors of n in the range 1 < d < n), A137510
• divisors, proper: often used incorrectly to refer to aliquot divisors (see divisors, aliquot)
• divisors, smallest prime power: A028233, A053597
• divisors, smallest: A020639*
• divisors, sum of odd: A000593*
• divisors, sum of: A000203*, A001065* (proper), A048050* (proper)
• divisors, summing over, in Maple: A000031*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Do

• dodecagonal is spelled 12-gonal in the OEIS
• dodecahedral numbers, sequences related to :
• dodecahedral numbers: A006566*, A007589, A005904* (centered)
• dodecahedral numbers: see also A005903, A053012, A004068, A005917, A053017, A053018, A053019
• dodecahedron, sequences related to :
• dodecahedron: A000545 A005903 A030135 A030137 A054882 A054883 A063722 A063723 A066402 A066404
• Doehlert-Klee designs: A005765
• dominoes, sequences related to :
• dominoes, game of: A031940, A008967, A045430
• dominoes, packing a box with (or tilings): (1) A001224 A004003 A006125 A001835 A002414 A003697 A003729 A003735 A003741 A003747 A003757
• dominoes, packing a box with (or tilings): (2) A003763 A003769 A003775 A004253 A005178 A007762 A028420 A038758 A054344
• dominoes: the five domino sequences: A108376, A108377, A108378, A108379, A108392
• Don's sequence: A007448
• donkey problem: see goat problem
• dopy numbers: A036554
• double factorial numbers n!!: A000165*, A001147* A006882*
• double factorial numbers, see factorial numbers, double, n!!
• double-free subsets: A050292
• doubling substrings (Max Alekseyev's problem): sequences related to :
• doubling substrings (Max Alekseyev's problem): A135473*, A135017, A135156, A135157
• doubling substrings (Max Alekseyev's problem): see also A137739, A137740, A137741, A137742, A137743*, A137744, A137745, A137746, A137747, A137748, A130838
• doubly triangular numbers: A002817
• Dowling numbers: A003581
• dragon-curve sequences: see folding a piece of paper (dragon curves)
• draughts: see checkers
• Dress's sequence: A001316*
• Duffinian numbers: A003624*
• dumbbells: A002940, A002941, A002889, A046741, A055608
• dungeons: sequences related to :
• dungeons: (01) The four main sequences and their pairwise differences are:
• dungeons: (02) alpha=A121263 ------------ beta-alpha=A122734 --------- beta=A121265
• dungeons: (03) ....|.......................................................|
• dungeons: (04) ....|..............gamma-alpha=A131011......................|
• dungeons: (05) delta-alpha=A130287.............delta-beta=A131012....beta-gamma=A127744
• dungeons: (06) ....|.......................................................|
• dungeons: (07) ....|.......................................................|
• dungeons: (08) delta=A121296 ------------ delta-gamma=A128916 ------- gamma=A121295
• duplicating substrings: see doubling substrings
• Dutch: A007485, A090589
• Dutch: see also Index entries for sequences related to number of letters in n
• Dyck paths, sequences related to :
• Dyck paths:: A005223, A005220, A005221, A005701, A005700, A005222, A006149, A006150, A006151
• dying rabbits: A000044 A023434 A023435 A023436 A023437 A023438 A023439 A023440 A023441 A023442
• Dynamic storage:: A005595, A005594
• D_3 lattice: see f.c.c. lattice
• D_3* lattice: see b.c.c. lattice
• D_4 lattice: see D4 lattice
• D_n lattice: coordination sequence for: see A007900

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Ea

• e, sequences related to :
• e, A003417, A006083, A006259, A006258, A007676, A006525, A001113*, A001114, A006085, A002668, A007512, A001355, A006526, A002285, A007525, A001204, A002119, A006084
• e, continued cotangent for: A002668*
• e, continued fraction for: A003417*
• e, convergents to: A007676*/A007677*, A002119*/A001517*, A053556*/A053557*, A097545/A097546
• e, decimal expansion of: A001113*
• e-divisors of n: see exponential divisors
• e-perfect numbers: A054979
• E-trees:: A007141, A007142, A007143, A007144
• e.g.f. , sequences related to exponential generating functions :
• e.g.f. exp[sum_{d|M} (exp(d*x)-1)/d], M=1..15: A000110 A002872 A002874 A141003 A036075 A141004 A036077 A141005 A141006 A141007 A036081 A141008 A141009 A141010 A141011
• e.g.f. sum_{d|M} (exp(d*x)-1)/d, M=1..15: A000012 A000051 A034472 A001576 A034474 A034488 A034491 A034496 A034513 A034517 A034524 A034660 A141012 A141013 A141014
• E6 lattice, sequences related to :
• E6 lattice, theta series of: A004007*, A005129 (dual)
• E7 lattice, sequences related to :
• E7 lattice, coordination sequence of: A008397*
• E7 lattice, crystal ball sequence of: A008398*
• E7 lattice, dual, coordination sequence of: A008921*
• E7 lattice, dual, crystal ball sequence of: A008922*
• E7 lattice, dual, theta series of: A003781, A030443
• E7 lattice, theta series of, see also A004535, A005931, A033699, A037191, A047632
• E7 lattice, theta series of: A004008*
• E7 lattice: E7 Lie algebra: A005496, A030649, A045515
• E8 lattice, sequences related to :
• E8 lattice, crystal ball sequence for: A008349, A001361
• E8 lattice, orbits of vectors in: A008350
• E8 lattice, sizes of balls in: A046948
• E8 lattice, theta series of: A004009*, A004017 (with respect to deep hole), A045819 (with respect to mid-point of edge), A108091 (eighth root)
• each term divides next: A002782
• Earliest sequences:: A007379, A007303, A007479
• Early Bird numbers: A116700
• eban numbers: A006933*
• eben numbers: see eban numbers: A006933*
• economical numbers: A046759*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Ed

• Eddington's estimate of protons in universe: A008868*
• Egyptian fractions, sequences related to :
• Egyptian fractions: A002966*, A002967*, A006585*, A000058*, A020473*, A201463 (the 200000-th sequence in the OEIS), A201464, A201514, A201643, A201644, A201646, A201647, A201648, A201649, A201650
• Egyptian fractions: see also (1) A001466 A006487 A006524 A006525 A006526 A014013 A014015 A028229 A028257 A030541
• Egyptian fractions: see also (2) A030542 A030543 A030544 A030545 A030546 A030659 A031285 A036680 A051882 A052428
• Egyptian fractions: see also (3) A051907 A051908 A051909 A069139 A069261 A038034 A092666 A092667 A092669 A092670 A092671 A092672
• Egyptian fractions: using odd denominators: A130738, A169820, A169821
• EHS numbers: A064164
• Eisenstein integers, norms of: A003136*
• Eisenstein series, sequences related to :
• Eisenstein series: A006352 (E_2, or G_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24)
• Eisenstein-Jacobi primes: A055664, A055665, A055666, A055667, A055668
• EKG sequence : sequences related to :
• EKG sequence : A064413*
• EKG sequence, B_p sequences for: A064004, A064007, A064042
• EKG sequence, controlling primes: A064740*, A064742
• EKG sequence, cycles in: A064669, A064793, A064784, A064665, A064666, A064667, A064668
• EKG sequence, fixed points: A064420
• EKG sequence, generalizations: A064417, A064418, A064419, A064956, A064958, A064959
• EKG sequence, inverse permutation: A064664
• EKG sequence, records in: A064424, A074177
• EKG sequence, where n (etc) appears: A064664, A064954, A064955, A064421, A064423, A064468
• EKG sequence, written in prime base: A064743, A064744, A067742
• EKG sequence: see also (1): A064301, A064426, A065519, A064469, A064470, A064471, A064472, A064473, A064474, A064475, A064654, A064655
• EKG sequence: see also (2): A064656, A064425, A064952, A064953, A064954, A064955, A064957, A065057
• EKG sequence: similar sequences (1): A109890*, A109735, A111241, A111240, A111242, A111243, A109736, A111238, A111239
• EKG sequence: similar sequences (2): A094339, A090252, A110924, A084385, A111244
• EKG sequence: similar sequences (3): A111267*, A111084, A111268, A111229, A111270, A111271, A111272
• EKG sequence: similar sequences (4): A111273

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_El

• electron mass: A003672
• elementary sequences, number of: A005268
• elevator buttons: A011760*, A052406
• elliptic , sequences related to "elliptic":
• elliptic curves, conductors: A005788
• elliptic curves, rank of: A060748*, A060838*, A060950*, A060951*, A060952*, A060953*, A007765, A007766
• elliptic function sn: see sn
• elliptic functions:: A001936, A002318, A001937, A001934, A001938, A002754, A001939, A001940, A001941, A002753, A006089, A004005
• ELN: see Even Lucky Numbers
• embeddings of graphs in plane: see maps, planar
• embeddings of graphs in sphere: see maps, planar
• emirps: A006567*, A046732*
• Enantiomorphs:: A006227
• Endomorphism patterns:: A006961
• Energy functions:: A002909, A002908, A007239, A003496, A003497, A003498
• Engel expansions , sequences related to :
• Engel expansions , definition: A006784*
• Engel expansions for: e (A028310), e^(1/2) (A004277), pi (A006784), 1/pi (A014012), sqrt(2) (A028254), sqrt(3) (A028257), sqrt(5) (A059176), sqrt(10) (A059177), the golden ratio, (1+sqrt(5))/2 (A028259)
• Engel expansions for: Euler's constant gamma (A053977), 2^(1/3) (A059178), 3^(1/3) (A059179), ln(2) (A059180), ln(3) (A059181), ln(10) (A059182), 1/ln(2) (A059183), 1/ln(10) (A059184), Pi^2 (A059185), Pi^2/6 or zeta(2) (A059186)
• Engel expansions for: e^Pi (A059196), Pi^e (A059197), e^gamma (A059199), -ln(ln(2)) (A059200), Catalan's constant G (A054543), Khintchine's constant (A054544),
• Engel expansions for: sqrt(Pi) (A059187), zeta(3) (A053980), Gamma(1/3) (A059188), Gamma(2/3) (A059189), gamma^2 (A059190), 1/gamma (A059191), ln(1/gamma) (A059192), 1/e (A059193), 1/e^2 (A059194), ln(Pi) (A059195)
• Engel expansions: see also (1) A001601 A002812 A006537 A006538 A006539 A006540 A006693 A006695 A007567 A007568
• English words for the numbers, dependent on: A005589, A002810, A001167
• English: see also Index entries for sequences related to number of letters in n
• enneagon is spelled 9-gon in the OEIS
• enneagonal is spelled 9-gonal in the OEIS
• Entringer , sequences related to :
• Entringer numbers: A008280*, A000111*, A006212, A006213, A006214, A006215, A006216, A006217, A008281, A008282, A008283, A010094
• Epstein's Put or Take a Square game: A005240, A005241
• equiangular lines: A002853*
• Erastothenes: spelled as Eratosthenes in the datasbase
• Eratosthenes: see sieve, Eratosthenes
• Erdos-Woods numbers: A059756
• erf: see error function
• Eric numbers: see Belgian numbers
• error function: A002067, A007019, A007680
• Esperanto: A057853
• Esperanto: see also Index entries for sequences related to number of letters in n
• esters: A000632, A005958
• eta(x), sequences related to :
• eta(x), Dedekind's function: A010815*, A007706*
• eta(x): see also A001482, A001483, A001484, A001485, A001486, A001487, A001488, A001490, A006665
• ethylene derivatives: A000631, A005959

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Eu

• Euclid , sequences related to :
• Euclid numbers: A006862*, A000058*, A014545
• Euclid's algorithm , sequences related to :
• Euclid's algorithm: (1) A034883 A049816 A049828 A049834 A049837 A049840 A049843 A049848 A049849 A049850 A051010 A051011
• Euclid's algorithm: (2) A051012
• Euclid's proof, primes from: A000945 A000946 A002585 A005265 A005266 A051342
• Euclid-Mullin sequence: A000945*, A000946*
• Euclidean fields: A003174*, A003246*
• Euler characteristics: A006481, A006482, A007888
• Euler graphs: see graphs, Euler
• Euler numbers , sequences related to :
• Euler numbers: A000364*, A000111*
• Euler numbers: generalized:: A001587, A005799, A000187, A000192, A005800, A001586, A000281, A000436, A000490, A002115
• Euler numbers: see also A007316, A002435, A001587, A005799, A000187, A000192, A005800, A002627, A001586, A007313, A000281, A002735, A002436, A002438, A002438, A002437, A000436, A000490, A002115
• Euler PHI function: A003473, A003474
• Euler polynomials , sequences related to :
• Euler polynomials: (1) A004172 A004173 A004174 A004175 A011934 A020523 A020524 A020525 A020526 A020547 A020548 A058940
• Euler polynomials: (2) A059341/A059342
• Euler totient function phi(n) (A000010): see totient function phi(n)
• Euler transforms: sequences related to :
• Euler transforms: ( 1) A000070 A000097 A000098 A000237 A000335 A000391 A000417 A000428 A000608 A000710 A000711 A000712
• Euler transforms: ( 2) A000713 A000714 A000715 A000716 A001372 A001373 A001384 A001385 A001970 A003080 A003094 A004101
• Euler transforms: ( 3) A004113 A005470 A005750 A007003 A007441 A007562 A007563 A007713 A007714 A007864 A018243 A023871
• Euler transforms: ( 4) A024607 A029856 A029857 A029859 A029860 A029861 A029862 A029863 A029864 A029877 A029878 A030009
• Euler transforms: ( 5) A030010 A030011 A030012 A030268 A034691 A034823 A034824 A034825 A034826 A034899 A035052 A035082
• Euler transforms: ( 6) A035528 A038000 A038055 A038059 A038063 A038064 A038065 A038066 A038071 A038072 A045842 A048808
• Euler transforms: ( 7) A048809 A048810 A048811 A048812 A048813 A048814 A048815 A049311 A049312 A050381 A050383 A053483
• Euler transforms: ( 8) A054051 A054053 A054742 A054746 A054747 A054749 A054919 A054921 A055277 A055375 A055884 A055885
• Euler transforms: ( 9) A055886 A055922 A055923
• Euler's constant gamma (or Euler-Mascheroni constant): A002852* (continued fraction for), A001620* (decimal expansion of)
• Euler's idoneal numbers, or numeri idonei (or numerus idoneus): sequences related to :
• Euler's idoneal numbers, or numeri idonei (or numerus idoneus): A000926*
• Euler's idoneal numbers, or numeri idonei (or numerus idoneus): see also A139642, A139827
• Euler's product: A002107
• Euler-Bernoulli numbers: A008280*, A008281
• Euler-Jacobi pseudoprimes: see pseudoprimes
• Euler-Mascheroni constant: see Euler's constant
• Eulerian circuits: A006239, A006240, A007082
• Eulerian numbers, sequences related to :
• Eulerian numbers, triangle of: A008292*, A008517, A049061
• Eulerian numbers, triangle of: see also A008518, A007338, A046802, A046803, A014467, A014468, A014469, A014470, A014472
• Eulerian numbers: A008292*
• Eulerian numbers: see also (1) A000295 A000460 A000498 A000505 A000514 A000800 A001243 A001244 A004301 A005803 A006260 A006551
• Eulerian numbers: see also (2) A007347 A011818 A014449 A014450 A014459 A014461 A014630 A014732 A014733 A014734 A014735 A014748
• Eulerian numbers: see also (3) A014749 A014756 A014758 A014759 A014765 A025585 A030196 A038675 A046802 A048516 A049039
• Eulerian polynomials: A008292*
• Eulerian polynomials: see Euler polynomials
• even numbers, fake: A080588
• even numbers: A005843*
• Even sequences:: A000117, A000116, A000206, A000208
• even unimodular lattices, see: lattices, unimodular
• evenish numbers (all digits even): A014263
• every permutation of digits is prime: A003459*
• evil numbers: A001969*
• excess of n: A046660*
• exclusive OR, see under XOR
• exp(1 - e^x): A000587*
• exp(Pi*sqrt(163)): A060295, A058292, A019297
• exponential divisors, sequences related to :
• exponential divisors: A049419, A051377, A054979, A054980
• exponential numbers: A000110
• Exponentiation:: A007548, A007549
• exponents in factorization of n: A124010
• Expressions:: A003006, A003007, A003008
• Expulsion array:: A007063
• extending, sequences that need, see sequences that need extending
• extremal theta series and weight enumerators, sequences related to :
• extremal theta series: A034597*, A034598, A008408, A004672, A004675
• extremal weight enumerators: A034414*, A034415
• EYPHEKA! , sequences related to :
• EYPHEKA! num = DELTA + DELTA + DELTA: A008443, A053604, A063992, A063993
• E_4 and E_6 theorem: A008615
• E_4 Eisenstein series: A004009
• E_6 Eisenstein series: A013973
• E_6 group: A008584
• E_6 lattice: see E6 lattice
• E_7 lattice: see E7 lattice
• E_7 Lie algebra: see E7 Lie algebra
• E_8 lattice: see E8 lattice
• E_8(3): A002268

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Fa

• f.c.c. lattice , sequences related to :
• f.c.c. lattice, animals in: A006194 A007198 A007199 A038172 A038173 A038174 A039742
• f.c.c. lattice, coordination sequence for: A005901*, A005902*
• f.c.c. lattice, norms: A004014, A110907
• f.c.c. lattice, orbits on points: A008368
• f.c.c. lattice, polygons on: A001337 A002899 A005398
• f.c.c. lattice, series expansions for: (1) A001407 A002165 A002166 A002892 A002918 A002921 A002924 A003205 A003209 A003491 A003495 A003498
• f.c.c. lattice, series expansions for: (2) A006806 A006812 A047712
• f.c.c. lattice, theta series of: A004015* A005884 A005885 A005886 A005887 A008663 A008664
• f.c.c. lattice, walks on: (1) A000765 A000766 A000767 A000768 A001336 A003287 A003288 A005543 A005544 A005545 A005546 A005547
• f.c.c. lattice, walks on: (2) A005548 A001337
• fabrics: A005441
• face-centered cubic lattice: see f.c.c. lattice
• factorial numbers , sequences related to :
• factorial numbers n!: A000142*
• factorial numbers, !n: A003422*
• factorial numbers, alternating: A005165*
• factorial numbers, as a product of smaller factorials: A034878, A075082
• factorial numbers, as a sum of two triangular numbers: A180590. A152089, A171099
• factorial numbers, differences of: A001564 A001565 A001688 A001689 A023043 A023044 A023045 A023046 A023047 A047920
• factorial numbers, divisibility of: A011776, A011777, A011778
• factorial numbers, double, n!!: A000165*, A001147*, A006882*
• factorial numbers, last nonzero digit in various bases (3-16): A136690, A136691, A136692, A136693, A136694, A136695, A136696, A008904*, A136697, A136698, A136699, A136700, A136701, A136702
• factorial numbers, left, !n: A003422*
• factorial numbers, n-factorials (1): A000407 A005329 A028687 A028688 A028692 A028693 A028694 A034829 A034830 A034831 A034832 A034833 A034834 A034835
• factorial numbers, n-factorials (2): A034904 A034908 A034909 A034910 A034911 A034912 A034975 A034976 A034977 A034996 A035012 A035013 A035017 A035018
• factorial numbers, n-factorials (3): A035020 A035021 A035022 A035023 A035024 A035097 A035265 A035272 A035273 A035274 A035275 A035276 A035277 A035278
• factorial numbers, n-factorials (4): A035279 A035308 A035323 A045754 A045755 A045756 A045757 A049209 A049210 A049211 A049212 A051188 A051189 A051232
• factorial numbers, n-factorials (5): A051262
• factorial numbers, q-factorials (1): A015001 A015002 A015004 A015005 A015006 A015007 A015008 A015009 A015011 A015013 A015015 A015017
• factorial numbers, q-factorials (2): A015018 A015019 A015020 A015022 A015023 A015025 A015026 A015027 A015028
• factorial numbers, sequences related to digits of: A006488 A033147 A033180 A035065 A035067 A045520 A045521 A045522 A045523 A045524 A045525 A045526 A045527 A045528
• factorial numbers: see also (01): A000966 A001048 A001272 A001710 A001715 A001720 A001725 A001730 A001804 A002301 A002981 A002982
• factorial numbers: see also (02): A003135 A004664 A005008 A005095 A005096 A005212 A005359 A006472 A006993 A007339 A007611
• factorial numbers: see also (03): A007749 A010790 A010791 A010792 A010793 A010794 A010795 A010796 A010797 A010798 A010799 A010800
• factorial numbers: see also (04): A024168 A033187 A033932 A033933 A034860 A034865 A034866 A034878 A036603 A037082 A037083 A038154 A038156
• factorial numbers: see also (05): A038157 A038507 A045647 A048742 A049432 A049433 A049614 A033312
• factorial numbers: see also (06): A000178, A000197, A007489, A001044, A000596, A002454, A002455, A002453, A000597, A05130, A051188
• factorial numbers: see also (07): A002109, A010786, A014144, A055209, A008904, A008905
• factorial primes: A002982, A055490
• factorials, double, see factorial numbers, double, n!!
• factorials, number of trailing zeros: A027868
• factorials: see factorial numbers
• factoring , sequences related to :
• factoring n, number of ways: A001055*
• FactorInteger (Mma): A035306
• Factorization (MAGMA): A035306
• factorization patterns: A006167, A006168, A006169, A006170, A006171
• factorization problems: see sequences whose extension requires factoring large numbers
• factorizations of important sequences: exponents in factorization of n: A124010, A064547
• factorizations, into given number of factors: writing n = x*y (A038548, unordered, A000005, ordered), n = x*y*z (A034836, unordered, A007425, ordered), n = w*x*y*z (A007426, ordered)
• factorizations, ordered: A074206*, A002033
• falling factorials: A005490, A005492, A005494
• fanout-free functions , sequences related to :
• fanout-free functions: A005612 A005615 A005617 A005736 A005737 A005738 A005740 A005741 A005742 A005743
• Farey series or tree or fractions , sequences related to :
• Farey series or tree: A006842*/A006843*, A007305*/A007306*, A049455*/A049456*, A177405/A177407, A178031, A178047, A177903, A178042
• fcc lattice: see f.c.c. lattice

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Fe

• Feigenbaum constants: A006890*, A006891*
• Fermat , sequences related to :
• Fermat coefficients: A000967 A000968 A000969 A000970 A000971 A000972 A000973
• Fermat numbers, 2^(2^n) + 1: A000215*, A050922
• Fermat primes, generalized: see primes, generalized Fermat
• Fermat primes: see primes, Fermat
• Fermat quotients: A007663*
• Fermat remainders: A002323*
• Fermat's last theorem: A019590*
• Fermionic string states: A005309, A005310
• Feynman diagrams: A005411, A005412, A005413, A005414

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Fi

• Fibbinary numbers: A003714*
• Fibonomial Catalan numbers: A003150*
• Fibonomial coefficients (1): A001655 A001656 A001657 A001658 A003267 A003268 A010048* A034801 A034802 A056565 A056566 A056567
• Fibonomial coefficients (2): A056568 A056570
• Fielder sequences:: A001635, A001636, A001641, A001642, A001643, A001644, A001645, A001648, A001649, A001638, A001639, A001640
• fields, cyclotomic: see cyclotomic fields
• Fifteen Puzzle, sequences related to :
• Fifteen Puzzle: A087725, A089473, A089484, A090031, A090032, A151943
• Fifth roots:: A005532, A005533, A005534, A003673
• Figurate numbers:: A000579, A002417, A002418, A002419
• figure 8's: A003304, A003305
• filaments: A002013, A002014
• final digits , sequences related to final digits of numbers :
• final digits: of n: A010879*
• final digits: (1) A000689 A000855 A000993 A001148 A001218 A001264 A001311 A001903 A002015 A003893 A004071 A007652
• final digits: (2) A008904 A008906 A008954 A008959 A008960 A014390 A014391 A014392 A014393 A025016 A028915
• final digits: (3) A030984 A030985 A030986 A030987 A030988 A030989 A030990 A030991 A030992 A030993 A030994 A030995
• final digits: (4) A045547 A045548 A045549 A045550 A045551 A045552 A045553 A045554 A045555 A045556 A045557 A045558
• final digits: (5) A045559 A045560 A045561 A045562 A045563 A045564 A045565 A045566 A045567 A045568 A045569 A045570
• final digits: (6) A045574 A046804 A047501 A055992 A056129 A056525 A056849 A058376 A059995 A060073 A060458 A060460
• final digits: (7) A060582 A060588 A061448 A061449 A061450 A061590 A061834
• final digits: (8) A061835 A061839 A062885 A063272 A063944 A064541 A064733 A064734 A065356
• final nonzero digits of factorial numbers in various bases (3-16): A136690, A136691, A136692, A136693, A136694, A136695, A136696, A008904*, A136697, A136698, A136699, A136700, A136701, A136702
• Fine's sequence: A000957*
• fine-structure constant: A003673, A005600
• Finite automata:: A007041, A006845, A000282, A006691, A000591, A006689, A006692, A006690
• finite difference measurements: A005192
• finite sequences with a large number of terms, sequences related to :
• finite sequences with a large number of terms: A038087, A038093, A102850, A117853
• Finnish: A001050
• Finnish: see also Index entries for sequences related to number of letters in n
• first factors: A000927
• First kind:: A000914, A000254, A000399, A001303, A000454, A000482, A001233, A000915, A001234
• First moment:: A006732, A006740, A006736
• First occurrence of:: A001602, A001177
• fiveish numbers (all digits 0 or 5): A169964
• fixed points of mappings , sequences related to :
• fixed points of mappings (01): A006996 0 -> {0, 0, 0}, 1 -> {1, 2, 0}, 2 -> {2, 1, 0}
• fixed points of mappings (02): A039969 0 -> {0, 0, 0}, 1 -> {1, 2, 0}, 2 -> {2, 1, 0} when 0 -> {0, 0, 0} 1 -> {1, 1, 1}, 2 -> {2, 2, 2}
• fixed points of mappings (03): A007949 0 -> {0, 0, 1}, 1 -> {0, 0, 2}, 2 -> {0, 0, 3}, 3 -> {0, 0, 4}, etc., a -> {0, 0, a + 1}
• fixed points of mappings (04): A003849 0 -> {0, 1}, 1 -> {0}
• fixed points of mappings (05): A096268 0 -> {0, 1}, 1 -> {0, 0}
• fixed points of mappings (06): A000035 0 -> {0, 1}, 1 -> {0, 1}
• fixed points of mappings (07): A096270 0 -> {0, 1}, 1 -> {0, 1, 1}
• fixed points of mappings (08): A100260 0 -> {0, 1}, 1 -> {0, 2}, 2 -> {3, 1}, 3 -> {3, 2}
• fixed points of mappings (09): A080843 0 -> {0, 1}, 1 -> {0, 2}, 2 -> {0}
• fixed points of mappings (10): A096271 0 -> {0, 1}, 1 -> {0, 2}, 2 -> {0, 0}
• fixed points of mappings (11): A007814 0 -> {0, 1}, 1 -> {0, 2}, 2 -> {0, 3}, 3 -> {0, 4}, etc., a -> {0, a + 1}
• fixed points of mappings (12): A101614 0 -> {0, 1}, 1 -> {0, 2}, 2 -> {1, 0}
• fixed points of mappings (13): A101659 0 -> {0, 1}, 1 -> {0, 2}, 2 -> {1, 1}
• fixed points of mappings (14): A101660 0 -> {0, 1}, 1 -> {0, 2}, 2 -> {1, 2}
• fixed points of mappings (15): A101661 0 -> {0, 1}, 1 -> {0, 2}, 2 -> {2, 0}
• fixed points of mappings (16): A101662 0 -> {0, 1}, 1 -> {0, 2}, 2 -> {2, 1}
• fixed points of mappings (17): A101663 0 -> {0, 1}, 1 -> {0, 2}, 2 -> {2, 2}
• fixed points of mappings (18): A010060 0 -> {0, 1}, 1 -> {1, 0}
• fixed points of mappings (19): A101664 0 -> {0, 1}, 1 -> {1, 2}, 2 -> {0, 0}
• fixed points of mappings (20): A101665 0 -> {0, 1}, 1 -> {1, 2}, 2 -> {0, 2}
• fixed points of mappings (21): A101666 0 -> {0, 1}, 1 -> {1, 2}, 2 -> {1, 0}
• fixed points of mappings (22): A101667 0 -> {0, 1}, 1 -> {1, 2}, 2 -> {2, 0}
• fixed points of mappings (23): A071858 0 -> {0, 1}, 1 -> {1, 2}, 2 -> {2, 0}
• fixed points of mappings (24): A000120 0 -> {0, 1}, 1 -> {1, 2}, 2 -> {2, 3}, 3 -> {3, 4}, etc.
• fixed points of mappings (25): A101668 0 -> {0, 1}, 1 -> {2, 0}, 2 -> {0, 0}
• fixed points of mappings (26): A101669 0 -> {0, 1}, 1 -> {2, 0}, 2 -> {0, 1}
• fixed points of mappings (27): A101670 0 -> {0, 1}, 1 -> {2, 0}, 2 -> {0, 2}
• fixed points of mappings (28): A101671 0 -> {0, 1}, 1 -> {2, 0}, 2 -> {1, 0}
• fixed points of mappings (29): A101672 0 -> {0, 1}, 1 -> {2, 0}, 2 -> {1, 1}
• fixed points of mappings (30): A010872 0 -> {0, 1}, 1 -> {2, 0}, 2 -> {1, 2}
• fixed points of mappings (31): A101673 0 -> {0, 1}, 1 -> {2, 0}, 2 -> {2, 0}
• fixed points of mappings (32): A101674 0 -> {0, 1}, 1 -> {2, 0}, 2 -> {2, 1}
• fixed points of mappings (33): A112658 0 -> {0, 1), 1 -> {2, 1}, 2 -> {0, 3}, 3 -> {2, 3}
• fixed points of mappings (34): A080846 0 -> {0, 1, 0}, 1 -> {0, 1, 1}
• fixed points of mappings (35): A076826 0 -> {0, 1, 2}, 1 -> {1}, 2 -> {2, 1, 0}
• fixed points of mappings (36): A053838 0 -> {0, 1, 2}, 1 -> {1, 2, 0}, 2 -> {2, 0, 1}
• fixed points of mappings (37): A091297 0 -> {0, 2}, 1 -> {0, 2}, 2 -> {1, 1}
• fixed points of mappings (38): A092606 0 -> {0, 2, 1}, 1 -> {0}, 2 -> {0}
• fixed points of mappings (39): A000004 0 -> {1}, 1 -> {0, 0}
• fixed points of mappings (40): A000012 0 -> {1}, 1 -> {0, 0}
• fixed points of mappings (41): A005614 0 -> {1}, 1 -> {1, 0}
• fixed points of mappings (42): A080764 0 -> {1}, 1 -> {1, 0, 1}}
• fixed points of mappings (43): A080764 0 -> {1}, 1 -> {1, 1, 0}
• fixed points of mappings (44): A029883 0 -> {1, -1}, 1 -> {1, 0, -1}, -1 -> {0}
• fixed points of mappings (45): A096268 0 -> {1, 0}, 1 -> {0, 0}
• fixed points of mappings (46): A035263 0 -> {1, 1}, 1 -> {1, 0}
• fixed points of mappings (47): A092412 0 -> {1, 1}, 1 -> {1, 2}, 2 -> {1, 3}, 3 -> {1, 0}
• fixed points of mappings (48): A014578 0 -> {1, 1, 1}, 1 -> {1, 1, 0}
• fixed points of mappings (49): A089650 0 -> {1, 1, 1}, 1 -> {1, 2, 0}, 2 -> {1, 0, 2}
• fixed points of mappings (50): A089652 0 -> {1, 1, 1, 1}, 1 -> {1, 2, 3, 0}, 2 -> {1, 3, 1, 3}, 3 -> {1, 0, 3, 2}
• fixed points of mappings (51): A051064 1 -> {1, 1, 2}, 2 -> {1, 1, 3}, 3 -> {1, 1, 4}, 4 -> {1, 1, 5}, etc.
• fixed points of mappings (52): A092400 1 -> {1, 1, 2, 1, 2, 1, 1}, 2 -> {1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1}
• fixed points of mappings (53): A003842 1 -> {1, 2}, 2 -> {1}
• fixed points of mappings (54): A056832 1 -> {1, 2}, 2 -> {1, 1}
• fixed points of mappings (55): A102005 1 -> {1, 2}, 2 -> {1, 1, 1}
• fixed points of mappings (56): A007001 1 -> {1, 2}, 2 -> {1, 2, 3}, 3 -> {1, 2, 3, 4}, etc., a -> {1,..., a+1}
• fixed points of mappings (57): A092782 1 -> {1, 2}, 2 -> {1, 3}, 3 -> {1}
• fixed points of mappings (58): A103269 1 -> {1, 2}, 2 -> {1, 3}, 3 -> {1}
• fixed points of mappings (59): A001511 1 -> {1, 2}, 2 -> {1, 3}, 3 -> {1, 4}, 4 -> {1, 5}, etc.
• fixed points of mappings (60): A105498 1 -> {1, 2}, 2 -> {1, 4}, 3 -> {3, 4}, 4 -> {3, 4}
• fixed points of mappings (61): A001285 1 -> {1, 2}, 2 -> {2, 1}
• fixed points of mappings (62): A001316 1 -> {1, 2}, 2 -> {2, 4}, 4 -> {4, 8}, 8 -> {8, 16}, etc., a -> {a, 2a}
• fixed points of mappings (63): A100619 1 -> {1, 2}, 2 -> {3, 1}, 3 -> {1}
• fixed points of mappings (64): A010882 1 -> {1, 2}, 2 -> {3, 1}, 3 -> {2, 3}
• fixed points of mappings (65): A105500 1 -> {1, 2}, 2 -> {3, 2}, 3 -> {3, 4}, 4 -> {1, 4}
• fixed points of mappings (66): A060236 1 -> {1, 2, 1}, 2 -> {1, 2, 2}
• fixed points of mappings (67): A105203 1 -> {1, 2, 1}, 2 -> {2, 3, 2}, 3 -> {3, 1, 3}
• fixed points of mappings (68): A105646 1 -> {1, 2, 1}, 2 -> {3, 4, 3}, 3 -> {4, 3, 4}, 4 -> {2, 1, 2}
• fixed points of mappings (69): A106825 1 -> {1, 2, 2, 2}, 2 -> {2, 1, 1, 1}
• fixed points of mappings (70): A105969 1 -> {1, 2, 3}, 2 -> {2, 1, 2}, 3 -> {3, 4, 5}, 4 -> {4, 3, 4}, 5 -> {5, 6, 1}, 6 -> {6, 5, 6}
• fixed points of mappings (71): A026600 1 -> {1, 2, 3}, 2 -> {2, 3, 1}, 3 -> {3, 1, 2}
• fixed points of mappings (72): A057215 1 -> {1, 2, 3}, 2 -> {2, 3, 1}, 3 -> {3, 1, 2} then 1 -> {0, 1}, 2 -> {1, 0}, 3 -> {0, 1}
• fixed points of mappings (73): A105789 1 -> {1, 2, 3, 2, 1}, 2 -> {4, 3, 2, 3, 4}, 3 -> {2, 1, 4, 1, 2}, 4 -> {3, 4, 1, 4, 3}
• fixed points of mappings (74): A106824 1 -> {1, 3}, 2 -> {1, 3, 2, 2, 3}, 3 -> {1, 3, 2, 3}
• fixed points of mappings (75): A080757 1 -> {2, 1}, 2 -> {2, 1, 1}
• fixed points of mappings (76): A106826 1 -> {2, 1}, 2 -> {2, 3}, 3 -> {4, 3}, 4 -> {4, 1}
• fixed points of mappings (77): A105499 1 -> {2, 1, 2}, 2 -> {1, 3, 1}, 3 -> {3, 2, 3}
• fixed points of mappings (78): A102668 1 -> {3}, 2 -> {1}, 3 -> {2, 1, 2}
• fixed points of mappings (79): A105584 1 -> {3, 4}, 2 -> {2, 3}, 3 -> {1, 2}, 4 -> {1, 4}
• fixed points of mappings (80): A092444 a -> {a, b}, b -> {c, c}, c -> {a, b}, a -> {1}, b -> {1}, c -> {0}
• fixed points of mappings (81): A038190 a -> {a, b}, b -> {a, d}, c -> {c, b}, d -> {c, d} a -> {2, 2, 0, 1}, b -> {0, 2, 1, 1}, c -> {0, 2, 2, 1}, d -> {1, 2, 0, 1}
• fixed points of mappings (82): A001316 a -> {a, 2a}
• fixed points of mappings (83): A038573 a -> {a, 2a + 1}
• fixed points of mappings (84): A006047 a -> {a, 2a, 3a}
• fixed points of mappings (85): A048883 a -> {a, 3a}
• Flavius's sieve: see sieve, Flavius
• flexagons: see hexaflexagons
• flimsy numbers: A005360*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Fo

• folding , sequences related to folding things :
• folding (or bending) a piece of wire: A001997*, A001998*, A001444*, A066372*
• folding a map: A001417, A001418
• folding a piece of paper (dragon curves): A014577, A014707, A014709, A014710
• folding a piece of paper, number of folds: A027383, A076024
• folding a strip of stamps: A001011*, A001010, A002369, A000682, A000560, A000136, A001415, A001416, A007822
• Ford and Johnson sorting: A001768
• forests , sequences related to :
• forests, binary: A003214
• forests, labeled: A001858*, A138464 (triangle); A000272 (labeled rooted)
• forests, random: A005196, A005197
• forests, unlabeled: A005195*, A136605 (triangle)
• forests: (1): A000248 A000949 A000950 A000951 A001862 A005198 A005199
• forests: (2): A006544 A006611 A011800 A020865 A020867 A020869 A020872 A033184 A033185 A035054 A035055 A035056
• forests: (3): A038000 A045739 A045740
• fortnightly intervals: A001356, A051121
• Fortunate numbers: A005235*, A045493, A046066, A035346
• Foster census: A059282*
• fountains of coins: A005169, A005170, A047998
• four 4's problem : sequences related to problem of building numbers from digits :
• four 4's problem: (1) A036057 A048183 A048249 A060315 A060316 A061310 A066409 A068520 A069765 A070960 A071115 A071313
• four 4's problem: (2) A071314 A071603 A071794 A071819 A071848 A071905 A071985 A078405 A078413
• four-color theorem: A000934
• fourth powers: A000583*
• fractal sequences , sequences related to fractals :
• fractal sequences: A003602 A003603 A004736 A002260 A020903 A020906 A022446 A022447 A038001 A108738 A101279 A118816
• fractional base: defined in A024630
• fractional base: see base, fractional
• fractions: see the separate Index to fractions in OEIS
• francais: see French
• Franel numbers: A000172*
• free energy series , sequences related to :
• free energy series (1): A001393 A002890 A002891 A007276 A010107 A010108 A010109 A010110 A010557 A030044 A030045 A030047
• free energy series (2): A030048 A030049 A056620
• free subsets: A007230, A007231, A007232, A007233
• French , sequences related to :
• French language, sequences involving: A001062 A006969 A007005* A014254 A014287 A014367 A037193 A037194
• French: see also Index entries for sequences related to number of letters in n
• Friedman's sequence (or Harvey Friedman's sequence): see A014221
• friendly numbers: A014567, A007770, A074902, A050972, A050973, A074873
• friendly pairs: A050972, A050973

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Fu

• full sets: A001192*
• Fullerenes: A007894*, A046880
• functional cube roots: A052132 - A052139
• functional determinants: A001970*
• functional square roots: A048602/A048603 (sin x), A048606/A048609 (sinh x), A048605/A048604 (atan x), A048607/A048608 (log (1+x)), A052104/A052105 (exp x - 1)
• functions, connected: A000081*
• functions, with a fixed point: A000081
• functors: A007322*
• fundamental discriminants: A003658
• fundamental units: (1) A003653 A003654 A006828 A006829 A006830 A006831 A006832 A014000 A014046 A014077 A023677 A023678
• fundamental units: (2) A048941 A048942 A053370 A053371 A053372 A053373 A053374 A053375 A055735
• fusc: A002487

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Ga

• G.C.D.: see entries under GCD
• g.c.d.: see entries under GCD
• G.F.: see generating functions
• g.f.: see generating functions
• Gaelic: A001368
• Gaelic: see also Index entries for sequences related to number of letters in n
• Galego: see also Index entries for sequences related to number of letters in n
• games , sequences related to :
• games, born on day n: A047995, A037142, A065401, A065402, A065407
• games, Grundy's game: see Grundy's game
• gamma (Euler-Mascheroni constant), sequences related to :
• gamma (Euler-Mascheroni constant): A002852* (continued fraction for), A001620* (decimal expansion of)
• gamma function, sequences related to :
• gamma function: A005446, A005147, A001164, A005146, A005447, A001163, A068467, A202623
• gaps: A002386, A005250, A002540, A000101, A000230, A000232, A001549, A001632
• gates:: A005610, A005611, A005609, A005608
• Gauss-Kuzmin-Wirsing constant: A038517
• Gaussian binomial coefficients, sequences related to :
• Gaussian binomial coefficients: (1): A006116 (q=2), A006117, A006118, A006119, A006120, A006121, A006122, A006099, A006098, A006104, A006103, A006109, A006108, A006115
• Gaussian binomial coefficients: (2): A006114, A006095, A006100, A006096, A006105, A006097, A006111, A006101, A006110, A006106, A006102, A006112, A006107, A006113
• Gaussian binomial coefficients: A006516* (Maple code)
• Gaussian binomial coefficients: A022166 (triangle of, q=2)
• Gaussian integers and primes , sequences related to :
• Gaussian integers and primes (1): A002145 A006495 A006496 A027206 A036693 A036694 A036695 A036696 A036697 A036698 A036699 A036700
• Gaussian integers and primes (2): A036701 A036702 A036703 A036704 A036705 A036706 A036707 A036708 A036709 A036710 A036711 A036712
• Gaussian integers and primes (3): A036713 A036714 A036715 A036716 A045326 A055025 A055026 A055027 A055028 A055029 A055683 A057352
• Gaussian integers and primes (4): A057368 A057429 A058767 A058770 A058771 A058772 A058775 A058777 A058778 A058779 A058782 A062327
• Gaussian integers and primes (5): A062711 A073253 A078458 A078908 A078909 A078910 A078911
• Gaussian primes: A055025, A055026, A055027, A055028, A055029
• GCD , sequences related to :
• GCD(x,y): A003989*, A050873*, A072030*
• GCD, greedy sequence: see EKG sequence
• GCD: A007464, A006579
• GCD: the canonical spelling for "greatest common divisor" in the OEIS is GCD (not gcd) (except of course in Maple and PARI lines)
• gcd: the canonical spelling for "greatest common divisor" in the OEIS is GCD (not gcd) (except of course in Maple and PARI lines)

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Ge

• generalized Fermat primes: see primes, Fermat, generalized
• generalized Fermat primes: see primes, generalized Fermat
• generated by substitutions:: A001030, A007001, A006697, A006977, A006978
• generating functions , sequences related to :
• generating functions of the form (1+x)/(1-kx) for k=1 to 12: A040000, A003945, A003946, A003947, A003948, A003949, A003950, A003951, A003952
• generating functions of the form (1+x)/(1-kx) for k=13 to 30: A170732 A170733 A170734 A170735 A170736 A170737 A170738 A170739 A170740 A170741 A170742 A170743 A170744 A170745 A170746 A170747 A170748
• generating functions of the form (1+x)/(1-kx) for k=31 to 50: A170749 A170750 A170751 A170752 A170753 A170754 A170755 A170756 A170757 A170758 A170759 A170760 A170761 A170762 A170763 A170764 A170765 A170766 A170767 A170768 A170769
• generating functions of the form 1/(1-kx+x^2) or x/(1-kx+x^2): A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190, A004191, A078362, A007655, A078364, A077412, A078366, etc.
• generating functions of the form Prod_{k>=0} (1+a*x^(b^k)) for the following values of (a,b): (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674
• generating functions of the form Prod_{k>=c} (1+a*x^(2^k-1)+b*x^2^k)) for the following values of (a,b,c): (1,1,0) A160573, (1,1,1) A151552, (1,1,2) A151692, (2,1,0) A151685, (2,1,1) A151691, (1,2,0) A151688 and A152980, (1,2,1) A151550, (2,2,0) A151693, (2,2,1) A151694
• generating functions, rational: see recurrences, linear
• generating functions satisfying a cubic: A001764 A007863 A036759 A036765 A078531 A088927 A067955 A102403 A120984 A120985 A128725 A128729 A128736
• generating functions satisfying equations of the form A(x)=1+zA(x)^k: A002293-A002296, A007556, A062994, A062744
• generating functions satisfying equations of the form r*A(x) = c + b*x + A(x)^n: A120588 - A120607
• generating functions, for definition see Wikipedia article
• Genocchi medians: A005439
• Genocchi numbers , sequences related to :
• Genocchi numbers: A001469*, A036968
• genus , sequences related to :
• genus, of modular group, A001617, A001767
• genus-1:: A006387, A006386, A006295, A006297, A006296
• genus:: A003639, A003638, A000933, A003636, A003637, A003171, A003644, A005527, A000934, A005431, A005525, A005526, A006298, A006299, A006301
• geometrical configurations: see configurations
• geometric sequences: see recurrences, linear, order 01
• geometries , sequences related to :
• geometries : A002773*, A004069, A031501
• geometries, linear: A001200*, A001548* (connected), A005426
• Germain primes: see primes, Germain
• German: A007208, A037199, A037200, A001061
• German: see also Index entries for sequences related to number of letters in n
• GF(2)[X]-polynomials , sequences containing or operating on, :
• GF(2)[X]-polynomials , sequences containing or operating on, (These sequences assume that the GF(2)[X]-polynomial is encoded in binary expansion of n like this: n=11, 1011 in binary, stands for polynomial x^3+x+1, n=25, 11001 in binary, stands for polynomial x^4+x^3+1)
• GF(2)[X]-polynomials, addition table, i.e. XOR(x,y), A003987
• GF(2)[X]-polynomials, bijections from/to natural numbers, preserving multiplicative structures, A091202-A091203, A091204-A091205
• GF(2)[X]-polynomials, GCD(x,y), table of, A091255
• GF(2)[X]-polynomials, irreducible and also prime in N, A091206
• GF(2)[X]-polynomials, irreducible and non-primitive, A091252
• GF(2)[X]-polynomials, irreducible and primitive, A091250*, A058947, A011260
• GF(2)[X]-polynomials, irreducible but composite in N, A091214
• GF(2)[X]-polynomials, irreducible, A014580*, A058943, A001037
• GF(2)[X]-polynomials, irreducible, characteristic function, A091225
• GF(2)[X]-polynomials, irreducible, order of each, A059478
• GF(2)[X]-polynomials, LCM(x,y), table of, A091256
• GF(2)[X]-polynomials, Matula-Goebel-tree analogues, A091238, A091239, A091240
• GF(2)[X]-polynomials, Moebius-analogue, A091219
• GF(2)[X]-polynomials, multiples of x+1, A048724
• GF(2)[X]-polynomials, multiples of x+1, shifted once right, A003188
• GF(2)[X]-polynomials, multiples of x^2+1, A048725
• GF(2)[X]-polynomials, multiples of x^2+x+1, A048727
• GF(2)[X]-polynomials, multiples of x^2+x, A048726
• GF(2)[X]-polynomials, multiplication table, A048720, A091257
• GF(2)[X]-polynomials, number of distinct irreducible divisors, A091221
• GF(2)[X]-polynomials, number of divisors, A091220
• GF(2)[X]-polynomials, number of irreducible divisors, A091222
• GF(2)[X]-polynomials, of the form x^n+1, A000051
• GF(2)[X]-polynomials, of the form x^n+1, number of distinct irreducible divisors, A000374
• GF(2)[X]-polynomials, of the form x^n+1, number of irreducible divisors, A091248
• GF(2)[X]-polynomials, powers of x+1, A001317
• GF(2)[X]-polynomials, powers of x^2+1, A038183
• GF(2)[X]-polynomials, powers of x^2+x+1, A038184
• GF(2)[X]-polynomials, powers, table of, A048723
• GF(2)[X]-polynomials, quasi-factorial analogue, A048631
• GF(2)[X]-polynomials, reducible and also composite in N, A091212
• GF(2)[X]-polynomials, reducible but prime in N, A091209
• GF(2)[X]-polynomials, reducible, A091242, A091254
• GF(2)[X]-polynomials, smallest m >= n, such that polynomial with code m is irreducible, A091228
• GF(2)[X]-polynomials, squares, A000695
• gf.: see generating functions
• Gijswijt's sequence , sequences related to :
• Gijswijt's sequence: A090822
• Gijswijt's sequence: generalizations: A091975, A091976, A092331-A092335
• Gijswijt's sequence: generalizations: A094321 (greedy version of second-order sequence)
• Gijswijt's sequence: generalizations: A094781 (two-dim. version)
• Gilbreath's conjecture, sequences related to :
• Gilbreath's conjecture: A036262*, A036261
• girth: see graphs, girth of
• Giuga numbers: A007850*
• Glaisher numbers, sequences related to :
• Glaisher's chi numbers: A002171*, A002172
• Glaisher's G numbers: A002111*
• Glaisher's H numbers: A002112*
• Glaisher's H' numbers: A002114*
• Glaisher's I numbers: A047788*/A047789*
• Glaisher's J numbers: A002325*
• Glaisher's T numbers: A002439*, A002811
• glass worms: see vers de verres
• Gleason's theorem: A008621, A008620
• gluons: A005415
• glycols: A000634

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Go

• Go games: A007565* A048289* A096259
• goat problem:
• goat problem: A173201, A133731, A075838, A173571, A191102, A192930
• Goedel, Escher, Bach, sequences related to :
• Goedel, Escher, Bach: A005185, A005206, A005228, A005374, A005375, A005376, A005378, A005379, A006877, A006878, A006884, A006885, A030124, A033958, A033959
• Goellnitz's theorem: A056970
• Golay codes, sequences related to :
• Golay codes: A001380*, A002289, A105683*, A105684
• Golay-Rudin-Shapiro sequence: A020985*, A020987*
• Goldbach conjecture, sequences related to :
• Goldbach conjecture: A001031*, A002372*, A002373*, A002374*, A002375*, A045917*, A006307*
• Goldbach conjecture: see also (1): A001172, A002091, A002092, A007697, A008929, A008932, A014092, A016067, A025017, A025018, A025019, A042978, A045917
• Goldbach conjecture: see also (2): A045919, A045922, A046903, A046920, A046921, A046922, A046923, A046924, A046925, A046926, A046927
• Goldbach conjecture: see also (3): A051034, A025583, A000607, A051345, A007534, A065577, A185297, A187129, A186201
• golden ratio phi , sequences related to :
• golden ratio phi (or tau) = (1+sqrt(5))/2: A001622* (decimal expansion), A000012* (continued fraction)
• golden ratio phi (or tau) = (1+sqrt(5))/2: binary expansion: A068432, A004714, A169868, A004555
• golden sieve: see sieve, golden
• Golomb rulers , sequences related to :
• Golomb rulers : A003022* (length of), A036501* (number of), A039953* (triangle of minimal), A078106 (missed distances), A054578 (number of)
• Golomb rulers, optimal, with 4 through 23 marks: (1) A079283 & A031869, A079287 & A031870, A079423 & A031871, A079425 & A031872, A079426 & A031873,
• Golomb rulers, optimal, with 4 through 23 marks: (2) A079430 & A031874, A079433 & A031875, A079434, A079435, A079454, A079467
• Golomb rulers, optimal, with 4 through 23 marks: (3) A079604, A079605, A079606, A079607, A079608, A079625, A079634
• Golomb's sequence: A001462*
• golygons: A006718*, A007219*
• good numbers: A000696
• Goodstein sequences: A056041 A056004 A059934 A057650 A056193 A059933 A059935 A059936
• gossip problem: A007456*, A058992
• Gould's sequence: A001316*
• gp: see PARI

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Gra

• graceful: see graphs, graceful
• Graham, Ron's sequence: A006255, A066400, A066401
• Gram points: A002505
• grandchildren of a binary vector: A057606, A057607, A000124
• graph reconstruction problem: A006652, A006653, A006654, A006655
• graphical partitions , sequences related to :
• graphical partitions: A000569 A001130 A004250 A004251 A007721 A007722 A029889 A029890 A029891 A029892 A029893 A029894
• graphs , sequences related to :
• graphs : A000088* (unlabeled), A008406* (unlabeled); A006125* (labeled), A000664, A006896, A006897, A007111, A008406
• graphs, 2-connected: A002218*, A021103*
• graphs, 3-connected, planar: A000109*, A049337*, A000944*, A005645*, A002880*
• graphs, 3-connected: A006290*, A052444*, A005644*, A007100*
• graphs, 4-valent: A005815, A005816
• graphs, acyclic directed: A003087* (labeled), A003024 (labeled)
• graphs, asymmetric: A003400
• Graphs, balanced, A005194, A005193
• Graphs, bicolored, A007140, A007139
• graphs, biconnected: see graphs, 2-connected
• Graphs, bipartite, A006823, A006612, A005142*, A004100, A001832, A006824, A006825, A006714
• graphs, bipartite, by number of edges: A000217 A050534 A053526 A053527 A053528
• graphs, bipartite: A033995*, A005142* (connected)
• graphs, blocks: see graphs, nonseparable
• graphs, bridgeless: A007146*, A007145
• Graphs, by cliques, A005289
• Graphs, by cutting center, A002887
• graphs, by girth: (1) A000066 A006787 A006856 A006923 A006924 A006925 A006926 A006927 A014371 A014372 A014374 A014375
• graphs, by girth: (2) A014376 A033886 A037233 A054760 A058275 A058276 A058343 A058348
• graphs, by numbers of nodes and edges: A008406
• graphs, cage: A052453, A052454
• graphs, Cayley: A000022 A000200 A006792 A006793 A049287 A049289 A049297 A049309
• graphs, chordal: A007134*, A058862*
• graphs, claw-free: A022562* (connected), A022563, A022564
• Graphs, colored, A002027, A002031, A002032, A002028, A000684, A002029, A002030, A000685, A005333, A000683, A000686, A006201, A005334, A006202
• graphs, common symbols for: C_n: The cycle graph on n vertices
• graphs, common symbols for: D_4: The graph on 4 vertices with the edges {1,2}, {1,3}, {2,3} and {1,4}
• graphs, common symbols for: K_n: The complete graph on n vertices
• graphs, common symbols for: O_5: The K_5 graph with one edge removed
• graphs, common symbols for: O_6: The octahedral graph
• graphs, common symbols for: P_n: The path graph on n vertices
• graphs, common symbols for: S_4: The star (or complete bipartite) graph on 4 vertices with the edges {1,2}, {1,3} and {1,4}
• graphs, common symbols for: S_5: The star (or complete bipartite) graph on 5 vertices
• graphs, common symbols for: W_4: The graph on 4 vertices with the edges {1,2}, {1,3}, {2,3}, {2,4} and {3,4}
• graphs, common symbols for: W_5: The graph on 5 vertices with the edges {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,5}, {3,4} and {4,5}
• Graphs, complete, A000933, A000241, A007333, A006600
• Graphs, complexity of, A006237, A006235
• graphs, connected : A001349* (unlabeled), A054923*, A046742* (unlabeled); A001187* (labeled); A003094* (planar)
• graphs, connected : table of by numbers of edges and nodes: A046742*, A054923*
• graphs, connected labeled, with n edges and n+k nodes for k=0..8: A057500 A061540 A061541 A061542 A061543 A096117 A061544 A096150 and A096224
• graphs, connected regular, see graphs, regular connected
• Graphs, connected, A005703, A001429, A001437, A005636, A002905, A000226, A004108, A006290, A007112, A000368, A001436, A001435, A001866
• graphs, connected, by number of edges: A002905*, A046091 (connected planar), A066951
• graphs, crossing number of: see crossing numbers of graphs
• graphs, cubic: see graphs, trivalent
• Graphs, cutting numbers of, A002888
• Graphs, cycle, A007389, A007388, A007387, A007391, A007390, A007392, A007393, A007394
• Graphs, cycles in, A006184
• Graphs, de Bruijn, A006946
• Graphs, degree sequences of, A005155
• graphs, directed, see digraphs
• Graphs, disconnected, A000719
• Graphs, Euler, A002854
• Graphs, Eulerian, A007124, A007127, A007128, A007131, A007132, A007129, A007125, A005143, A007081, A005780, A003049, A007126, A007130, A007133
• graphs, even: A001188*
• Graphs, functional, A001373
• Graphs, genus of, A000933
• graphs, girth of: (1) A000066 A006787 A006856 A006923 A006924 A006925 A006926 A006927 A014371 A014372 A014374 A014375
• graphs, girth of: (2) A014376 A033886 A037233 A054760 A058275 A058276 A058343 A058348 A058861
• graphs, graceful: A004137 A005488 A006967 A033472
• graphs, graceful: A004137 A005488 A033472
• graphs, Hamiltonian cycles on square grid: A003763, A120443, A140519, A140521
• graphs, Hamiltonian: (1) A000103 A000264 A000356 A001186 A001906 A003042 A003043 A003122 A003123 A003216 A003435 A003436
• graphs, Hamiltonian: (2) A003437 A005144 A005389 A005390 A005391 A005979 A006069 A006070 A006791 A006795 A006796 A006797
• graphs, Hamiltonian: (3) A006798 A006864 A006865 A007030 A007031 A007032 A007033 A007035 A007036 A007083 A007084 A007085
• graphs, Hamiltonian: (4) A022564 A027362 A031878 A049366 A057112 A060135 A063546
• Graphs, independence number of, A006946
• Graphs, independent sets in, A007386, A007385, A007384, A007391, A007383, A007382, A007390, A007392, A007393, A007394
• graphs, inseparable: see graphs, nonseparable
• Graphs, interval, A005217, A007123, A005975, A007122, A005219, A005976, A005977, A005215, A005218, A005978, A005974, A005216, A005973
• graphs, interval: see interval graphs
• graphs, irreducible: A005643
• graphs, K_4-free: A052450, A052451
• graphs, least number of edges in: A004401
• graphs, line: A003089
• graphs, mating: A006024
• graphs, misleading: see deceptive plots
• graphs, Moore: A005007*
• graphs, nonseparable (or blocks): A002218*, A003317*, A004115*, A013922*, A001072, A054316, A054317, A006290
• Graphs, of maximal intersecting sets, A007007, A007008, A007006
• Graphs, oriented, A002785, A005639, A007081, A007110, A007109
• Graphs, partition, A007269, A007268
• Graphs, path, A007381, A007380, A007386, A007385, A007384, A007383, A007382
• graphs, perfect: A052431*, A052433
• Graphs, planar, A006401, A006400, A003094, A006791, A003055, A006395, A006394, A005964
• graphs, planar: A002841 (self-dual)
• graphs, planar: A005470* (unlabeled), A066537* (labeled), A096332* (connected labeled)
• graphs, planar: A049334* and A003094* (connected), A049336* and A021103* (2-connected), A049337* and A000944* (3-connected)
• graphs, pointed: see graphs, rooted
• Graphs, polygonal, A002560
• Graphs, polyhedral, A007026, A002840, A007024, A006866, A007029, A006867, A006869, A000287, A007027, A007025, A007028
• graphs, regular connected, of degree k: A002851 (k=3); A006820 (k=4); A006821 (k=5); A006822 (k=6); A014377 (k=7); A014378 (k=8); A014381 (k=9); A014382 (k=10); A014384 (k=11)
• Graphs, regular, A005176, A005177, A006820, A006821, A006822
• graphs, rooted, triangle of: A070166
• Graphs, self-complementary, A000171, A002785
• Graphs, self-converse, A005639
• Graphs, self-dual, A002841, A004104
• graphs, series-parallel: see series-parallel networks
• Graphs, series-reduced, A003514, A002935, A006289, A003515
• Graphs, signed, A004104, A004102
• Graphs, spectra of, A006608
• Graphs, splittance of, A007183
• Graphs, squarefree, A006786, A006855
• Graphs, stable, A006545
• Graphs, star, A002935
• Graphs, Steinhaus, A003660, A003661
• Graphs, tensor sum of, A006237
• Graphs, transitive, A006799*, A006800
• graphs, triangle of numbers of, connected, unlabeled: A054924*, A046751, A076263, A054923, A046742
• Graphs, triangle-free, A006785, A006903
• graphs, triangle: A000080*
• Graphs, triangles in, A006600
• graphs, triangulated: A007134*
• graphs, trivalent: A005638*, A002851* (connected), A032355* (transitive), A059282* (symmetric)
• Graphs, trivalent:: see also A006796, A006797, A000066, A005967, A002851, A005638, A003175, A006795, A005814, A002831, A006798, A006607, A002830, A006713, A006712, A006188, A006714, A007101, A007103, A007102, A007100, A007099, A004109, A002829
• Graphs, unicyclic, A006545
• Graphs, valence of, A007007
• Graphs, vertex-degree sequences of, A006869
• Graphs, vertex-transitive, A006792, A006793
• graphs, with loops, triangle of: A070166
• graphs, with n nodes and n-k edges: A001434, A001433, A001430, A001431, A001432, A000717, A048179, A008406
• Graphs, with no isolated vertices, A006648, A006649, A002494, A006647, A006651, A006650
• Graphs, without endpoints, A004110
• Graphs, without points of degree 2, A005637
• grasshopper sequence: A007319
• Gray codes, sequences related to :
• Gray codes: A003042, A003043, A006069, A006070, A091299, A091302, A066037
• Gray codes: A005811, A003100, A003188, A014550, A006068

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Gre

• greatest common divisor: see entries under GCD
• greatest prime divisor: A006530
• greatest prime factor: A006530
• Greedy algorithm:: A006892, A006894, A006893
• greedy GCD sequence: see EKG sequence
• greedy rational packing sequence: A066720*, A066721*, A066775, A066657/A066658, A066848, A066849
• Green's function , sequences related to :
• Green's function:: A003301, A003283, A003299, A003282, A003302, A003280, A003284, A003300, A003298, A003281
• greengrocer's numbers: A002412*
• Greg trees: see trees, Greg
• Grids:: A005418, A007543, A007544
• Grossman's constant: A085835
• group: see groups
• groupoids , sequences related to :
• groupoids , (This word has several different interpretations!)
• groupoids , A001329* (unlabeled) A001424 A002489* (labeled) A079171
• groupoids, 1 idempotent: A030253* A030254 A030255 A030263 A030264 A030265 A030271
• groupoids, anti-associative: A079179 A079180 A079181
• groupoids, anti-commutative: A079189 A079190 A079191
• groupoids, as categories with inverses, connected: A140185, A140186, A140187
• groupoids, as categories with inverses: A140188, A140189, A140190
• groupoids, associative: see semigroups
• groupoids, asymmetric: A030245* A030248 A030251 A030255 A030258 A030261 A030264 A030271 A038019 A038022 A038023
• groupoids, by idempotents: A038018* A038019 A038020 A038021 A038022 A038023
• groupoids, commutative (1): A001425* (unlabeled) A023813* (labeled) A030256 A030257 A030258 A030259 A030260 A030261 A030262 A030263 A030264 A030265
• groupoids, commutative (2): A038016 A038017 A076113 A038021 A038022 A038023 A079185 A079195 A079196 A079197 A090598 A090599
• groupoids, idempotent: A030247* (unlabeled) A030248 A030249 A030257 A030258 A030259 A038015 A038017 A076113 A090588* (labeled)
• groupoids, no idempotents: A030250* A030251 A030252 A030260 A030261 A030262
• groupoids, non-associative: A079172 A079173 A079174 A079192 A079193 A079194 A079195 A079196 A079197
• groupoids, non-commutative: A079182 A079183 A079184 A079192 A079193 A079194
• groupoids, pointed: A006448* A038015 A038016 A038017
• groupoids, self-converse: A029850* A090604
• groupoids, symmetric: A030246 A030249 A030252 A030254 A030256 A030259 A030262 A030265 A038020
• groupoids, with identity: A090598 A090599 A090600 A090601* A090602* A090603 A090604
• groups , sequences related to :
• groups, A000001* (number of groups of order n), A000679* (number of order 2^n), A034383*
• groups, abelian, every group of this order is: A051532
• groups, abelian: A000688*, A034382*, A046054-A046056, A050360, A051532
• groups, alternating: A000702, A001710, A007002
• groups, alternating: see also alternating group A_m, degrees of irreducible representations of
• groups, automorphism group of: A059773
• groups, binary icosahedral: A008651
• groups, binary octahedral: A008647
• groups, braid, see braids
• Groups, chain of subgroups in S_n, A007238
• groups, conjugacy classes: A073043*, A003061*, A002319*, A006379*, A000702, A000638, A029726, A045615, A006951, A006952, A003606
• groups, crystallographic: see groups, space
• groups, cyclic (1): A001034 A001443 A002956 A006204 A006205 A006379 A007687 A007688 A008610 A008611 A008646
• groups, cyclic (2): A008976 A009490 A019536 A034381 A037221 A046072 A047680 A049287 A049288 A049289 A049297 A049309
• groups, cyclic (3): A051625 A051636 A053651 A053658 A053660 A054522 A057731
• groups, cyclic, every group of this order is: A003277, A050384
• Groups, dihedral, A007503
• groups, Euclidean: see groups, space
• groups, free abelian: A007322
• Groups, general linear, A006952, A006951, A003606
• Groups, generators for, A001691
• Groups, invariants of, A002956
• groups, labeled: A034381, A034382, A034383*, A058161-A058163
• groups, least inverse, A046057
• Groups, Lorentzian, A005793, A005794
• groups, maximal number of subgroups in: A018216, A061034, A083573
• groups, modular : sequences related to :
• groups, modular: (1) A001766 A001767 A004048 A005133 A005793 A005794 A027364 A027633 A027634 A027638 A027639 A027672
• groups, modular: (2) A037944 A037945 A037946 A037947 A054886 A063759 A001617
• groups, Monster simple group: see Monster simple group
• Groups, multiplicative, A007230, A007232, A007233, A007231
• groups, nilpotent, every group of this order is: A056867, A056868
• groups, nonabelian: A060689*, A003061
• groups, number of, A000001*, A060689*, A000679, A046057, A046058, A046059
• groups, of order n: A000001, 2^n: A000679, 3^n: A090091, 5^n: A090130, 7^n: A090140
• groups, of tournaments: see tournaments
• groups, only one of this order: A003277, A050384
• Groups, orthogonal, A003053
• groups, perfect: A060793
• groups, permutation, primitive: A000019*, A023675*
• groups, permutation, transitive: A002106*, A023676*
• groups, permutation: A000637*, A000638*, A005432*
• groups, pointed: A126103, A126102
• groups, shuffle: A007346 A014525 A014766 A014767
• groups, simple: A005180* (orders of), A001034* (orders of noncyclic), A001228* (sporadic), A008976
• groups, solvable, every group of this order is: A056866
• groups, space: A004029*, A006227*, A004027*, A004028*, A006226, A005031, A007308
• Groups, symmetric, A000701, A003040, A007234, A005012, A001691
• groups, symmetric: see also symmetric group S_m, degrees of irreducible representations of
• groups, tiling: see groups, space
• Grundy's game, sequences related to :
• Grundy's game: A002188, A036685, A036686
• Gudermannian: A028296*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Ha

• h.c.p. (hexagonal close packing), sequences related to :
• h.c.p., coordination sequence: A007899
• h.c.p., crystal ball sequence: A007202
• h.c.p., numbers represented by: A005870
• h.c.p., theta series of: A004012*, A005871, A005872, A005873, A005874, A005888, A005889, A005890
• Hadamard matrices , etc., sequences related to :
• Hadamard matrices, excess of: A004118
• Hadamard matrices, mass of: A048615*/A048616*
• Hadamard matrices, number of: A007299*, A036297*
• Hadamard matrices, orders of: A019442
• Hadamard matrices, regular: see A016742
• Hadamard maximal determinant problem: A003432*, A003433, A036297, A051753
• half-totient function: A023022
• Halving:: A003155, A006577
• Hamilton , sequences related to :
• Hamilton cycles, paths, graphs: see graphs, Hamiltonian
• Hamilton numbers: A000905*, A002090, A006719
• Hamiltonian cycles: see graphs, Hamiltonian
• Hamiltonian graphs: see graphs, Hamiltonian
• Hamiltonian paths or cycles on the n-cube: see also Gray codes
• Hamiltonian paths: see graphs, Hamiltonian
• Hamiltonian polyhedra: see graphs, Hamiltonian
• Hamming sequence: A051037
• Hankel function: A002514
• Hannah Rollman's numbers: A048992*
• Hanoi, see Towers of Hanoi
• happy factorizations: A007696, A007697, A007698
• happy numbers: A007770*, A038497, A001273
• Harary and Palmer, Graphical Enumeration, sequences found in
• hard-hexagon model: A007236
• harmonic , sequences related to :
• harmonic coefficients, triangle of: A027858
• harmonic means: (1) A001599 A001600 A006086 A006087 A007340 A046793 A046794 A046795 A046796 A046797 A053626 A053627
• harmonic means: (2) A053628 A053629 A055081 A056136
• harmonic numbers: A001599*, A001008*/A002805*, A035527
• harmonic numbers: see also A001600, A008380, A035047 A035048 A046024 A051046 A052488 A055573
• harmonic series, odd: A074599/A025547
• harmonic series: A002387*, A004080*
• harmonic triangle of Leibniz: A003506*
• harmonic triangle of Leibniz: see also A002457 A007622 A046200 A046201 A046202 A046203 A046204 A046205 A046206 A046207 A046208 A046212
• Harvey Friedman's sequence: see A014221
• Hauptmodul series: A007325
• Havender tableaux: A007345
• HCF (highest common factor) is written as GCD (greatest common divisor) in the OEIS
• hcf (highest common factor) is written as GCD (greatest common divisor) in the OEIS
• HCF: the canonical spelling in the OEIS is GCD (nor HCF or gcd) for "greatest common divisor"
• hcf: the canonical spelling in the OEIS is GCD (nor hcf or gcd) for "greatest common divisor"
• hcp: see h.c.p

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_He

• Heawood conjecture, sequences related to :
• Heawood conjecture: A000934*
• Hebrew: A0A027684
• Hebrew: see also Index entries for sequences related to number of letters in n
• Heegner numbers: A003173
• hendecagon is spelled 11-gon in the OEIS
• heptagonal numbers: A000566*
• heptagonal pyramidal numbers: A002413*
• Hermite constant: A007361*/A007362*
• Hermite polynomials, sequences related to :
• Hermite polynomials, A060821*
• Hermite polynomials, diagonals, A001816
• Hermite polynomials, discriminant, A054374
• Hermite polynomials, inverse coefficients, A001814, A047974, A067147*
• Hermite polynomials, resultants, A054373
• Hermite polynomials, row sums: A000898, A062267*
• Hermite polynomials, unitary, A066325*
• Hertzsprung's problem: A002464*
• hex numbers: A003215*, A006062, A006244, A006051
• hexaflexagons, sequences related to :
• hexaflexagons: A000207*, A007282*, A007499, A057162, A001683*, A000108, A112385
• hexaflexagrams: see hexaflexagons
• hexagonal , sequences related to :
• hexagonal close packing: see h.c.p
• hexagonal lattice: see A2 lattice
• hexagonal numbers: A000384*, A003215* (centered)
• Hexagonal prism:: A005914, A005915
• hexagonal pyramidal numbers: A002412
• Hexanacci numbers:: A001592, A000383
• hierarchies, sequences related to :
• hierarchies: A075729*, A000670, A075744, A075900, A075756, A000629, A075792
• highest common factor (hcf) is written as GCD (greatest common divisor) in the OEIS
• highly abundant numbers: A002093*
• highly composite numbers: A002182*, A002473*
• highly composite numbers: see also A000705, A002201, A002498, A002497, A002037, A117825
• highly powerful numbers: A005934*
• Hilbert series: see Molien series
• Hindi: see also Index entries for sequences related to number of letters in n

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Ho

• Hofstadter , sequences related to :
• Hofstadter-Conway \$10,000 challenge sequence: A004001*
• Hofstadter-type sequences: (1) A002024 A004001 A005185 A005206 A005228 A005374 A005375 A005376 A005378 A005379 A046699 A055748
• Hofstadter-type sequences: (2) A006949 A070864 A070867 A070868
• Hoggatt sequences:: A005362, A005363, A005364, A005365, A005366
• holes, sequences related to :
• holes:: A000104, A006986, A005882, A005873, A004024, A005927, A005883, A005886, A005872, A005887, A001419, A005878, A005879, A004017, A004034
• home primes: see primes, home
• honeycomb, sequences related to :
• honeycomb:: A006743, A006774, A007214, A003204, A002910, A001668, A006851, A002978, A003199, A005396, A007206, A002912, A003200, A192871
• horse problem: see goat problem
• humble numbers: A002473
• Hungarian: A007292
• Hungarian: see also Index entries for sequences related to number of letters in n
• Hurwitz numbers: A002306/A047817
• Hurwitz-Radon numbers, sequences related to :
• Hurwitz-Radon numbers: A003484*, A003485, A053381
• hydrocarbons , sequences related to :
• hydrocarbons : A000602*, A002986
• hydrocarbons, bicentered: A000200*
• hydrocarbons, centered: A000022*
• hyperbinomial transform: A088956
• hyperfactorials: A002109*
• hypergraphs, uniform: A000665, A051240, A092337
• hyperperfect numbers: A007592*, A007593, A007594, A034897*
• hyperplane arrangements: A005840
• Hypertournaments:: A006250, A006249
• hypothenusal numbers: A001660*
• hypotheses, n-dimensional: A005465
• hypotheses: A005465

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Ia

• I Ching: A102241, A125638, A092943 icosahedron, sequences related to :
• icosahedron, icosahedral numbers: A006564*, A005902
• icosahedron: A005901, A006564*, A005902
• icosahedron: see also A030136 A030138 A030517 A030518 A054472 A054884 A054885 A064521 A066404 A071398 A071402
• idempotents: A007185, A016090
• idoneal numbers: see Index entries for sequences related to Euler's idoneal numbers
• If n appears 2n doesn't, etc.:: A007417, A005658, A003159*, A002977, A005660, A005659, A007319, A005662, A005661
• ifactor (Maple): A035306
• ifactors (Maple): A035306
• Imaginary parts:: A006496
• Impedances:: A003129, A003128, A003130
• Impossible values:: A005114
• impractical numbers: A007621*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_In

• Incidence matrices:: A002725, A002728
• increasing blocks of digits: sequences related to :
• increasing blocks of digits: A001114, A001369, A098967
• Indefinitely growing:: A006745
• Independence number:: A006946
• Independent sets:: A007380, A007388, A007387, A007386, A007385, A007384, A007391, A007383, A007382, A007390, A007392, A007393, A007394
• Infinitary perfect:: A007358, A007357
• infinitesimal generators: A005119
• initial digits , sequences related to initial digits of numbers :
• initial digits: (1) A000030 A002993 A002994 A008963 A038546 A045509 A045510 A045511 A045516 A045517 A045518 A045519
• initial digits: (2) A045520 A045521 A045522 A045523 A045524 A045525 A045526 A045527 A045528 A045725 A045726 A045727
• initial digits: (3) A045728 A045729 A045730 A045731 A045732 A045733 A045784 A045785 A045786 A045787 A045788 A045789
• initial digits: (4) A045791 A045792 A045793 A045855 A045856 A045857 A045858 A045859 A045860 A045861 A045862 A045863
• initial digits: (5) A047658 A057563
• integers, Gaussian, see Gaussian integers
• integers: A000027*
• integral points:: A002789, A002579, A002578
• integral, sequences related to "integral" :
• Integral: the style used for integrals in the OEIS is illustrated by: Integral_{ x = 2..infinity } 1/log(x) dx or Integral_{ x = 2..infinity } 1/log(x)
• integral: the style used for integrals in the OEIS is illustrated by: Integral_{ x = 2..infinity } 1/log(x) dx or Integral_{ x = 2..infinity } 1/log(x)
• Integrals:: A001757, A001193, A001194, A001756
• Integrate: the style used for integrals in the OEIS is illustrated by: Integral_{ x = 2..infinity } 1/log(x) dx or Integral_{ x = 2..infinity } 1/log(x)
• integrate: the style used for integrals in the OEIS is illustrated by: Integral_{ x = 2..infinity } 1/log(x) dx or Integral_{ x = 2..infinity } 1/log(x)
• interprimes: A024675
• intersections of diagonals: see Poonen-Rubinstein paper
• interval graphs , sequences related to :
• interval graphs: A005215, A005216, A005217, A005218, A005219, A005973, A005974, A005975, A005976, A005977, A005978, A007122, A007123
• interval orders: A000763, A005410, A049463, A022493
• interval schemes: A005213
• intervals, relations between: A055203*
• Invariants:: A007478, A002956, A000807, A007293, A007043
• INVERT transform, sequences related to :
• INVERT transform: (1) A000107 A002426 A007564 A007971 A023359 A030017 A030018 A030238 A033453 A049037 A051529 A051573
• INVERT transform: (2) A055372 A055373 A055374 A055887 A055888 A057547
• INVERT transform: see Transforms file
• Irish Gaelic: see also Index entries for sequences related to number of letters in n
• Irish: A001368
• irreducible polynomials: A001037*
• irreducible representations, degrees of: see degrees of irreducible representations
• irregular primes: A000928
• isogons: A007219
• isthmuses: A006398, A006399
• Italian: A026858
• Italian: see also Index entries for sequences related to number of letters in n
• Iterated exponentials:: A000154, A000258, A000307, A000310, A000357, A000359, A000405, A000406, A001669, A001765
• Iterates of number-theoretic functions:: A002217, A005424, A003271
• i^i: A049007*, A0049006*, A006228

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_J

• J-function: A000521*, A007240, A014708
• J2 simple group: A003905, A005813
• Jack Benny: A056064
• Jacobi elliptic function sn: A004005, A060628
• Jacobi nome, sequences related to :
• Jacobi nome: A005797, A002639/A119349, A002103
• Jacobi nome: see also (1) A000700 A001936 A004011 A005798 A007247 A007248 A007267 A014969 A029839 A029845 A078791 A081360
• Jacobi nome: see also (2) A083365 A107035 A113184 A115977 A124863 A124972 A132136 A134746 A134747 A139820
• Jacobi symbol: A034947 = (-1,n)
• Jacobi theta series: theta_2(q): A098108, theta_3(q): A000122, theta_4(q): A002448
• Jacobi triple product identity: A000122*
• Jacobsthal sequence: A001045*
• Jacobsthal-Lucas numbers: A014551*
• Japanese: see also Index entries for sequences related to number of letters in n
• jeep problem: see A025547, A025550, A075135
• join points around circle: see Poonen-Rubinstein paper
• joke numbers: A006753
• Jordan algebras: A001776
• Jordan function J_k: A000010, A007434, A059376, A059377, A059378, A069091, A069092, A069093, A069094, A069095
• Jordan function ratios J_k/J_1: A001615, A160889, A160891, A160893, A160897, A160908, A160953, A160957, A160960, A160972, A161010, A161025, A161139, A161167, A161213
• Jordan-P\'{o}lya numbers:: A001013
• Josephus problem: (1) A000960 A005427 A005428 A006165 A006257* A007495 A032434 A032435 A032436 A054995 A056526 A056530
• Josephus problem: (2) A056531 A066997 A082125 A083286 A083287 A088442 A088443 A088452 A088333
• Josephus's sieve: see sieve, Flavius Josephus
• Joyce, James, "Ulysses": A054382
• juggler sequence, sequences related to :
• juggler sequence: A094683 A094685
• juggler sequence: see also A007320 A007321 A094684 A094693 A094696 A094697 A094697 A094708 A094716 A094725 A094778
• juggling, sequences related to :
• juggling, other related sequences: A006694, A047996, A065167, A065171, A065174, A071160, A060495, A060498
• juggling, site swaps, infinite sequences of, 3 balls: A084501*, A084511, A084521, A084452, A084458, A010701, A010694
• juggling, site swaps, number of: A065177*, A084509, A084519, A084529
• jumping champions, jumping problem, sequences related to :
• jumping champions: A087102 A087103 A087104
• jumping problem: A002466 A019592 A019593 A019595 A019596 A019993 A019994 A019995 A019996 A019997 A019998 A052709
• junction numbers: A006064
• Justified arrays:: A007073, A007074, A007072

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_K

• k-arcs: A005524
• K-free sequences:: A003002, A003003, A003004, A003005
• K12 lattice , sequences related to :
• K12 lattice, theta series of: A004010*
• Kagome' lattice: A001665, A005397
• Kappa_{12} lattice: see K12 lattice
• Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order), sequences related to :
• Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 1) A151949*, A099009*, A099010, A069746, A090429, A132155, A151946, A151947, A151950, A056965,
• Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 2) A151951, A151955, A151956, A151957, A151958, A151959*, A151962, A151963, A151964, A151965, A151966
• Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 3) A151967, A151968
• Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 4) A164715, A164716, A164717, A164718, A164719, A164720, A164721, A164723, A164724, A164725, A164726, A164727
• Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 5) A164728, A164729, A164730, A164731, A164732, A164733, A164734, A164735, A164736
• Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 6) [base 2] A160761, A163205, A164884, A164885, A164886, A164887
• Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 7) [base 3] A164993-A165011
• Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 8) [base 4] A165012-A165031
• Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): ( 9) [base 5] A165032-A165050
• Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): (10) [base 6] A165051-A165070
• Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): (11) [base 7] A165071-A165089
• Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): (12) [base 8] A165090-A165109
• Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): (13) [base 9] A165110-A165129
• Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): (14) [Joseph Myers's program for sequences related to] See A151949
• Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): see also RADD sequences
• Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): see also RATS sequences
• Kaprekar map n -> (n with digits in decreasing order) - (n with digits in ascending order): see also Reverse and Add! sequences
• Kaprekar numbers: A006886*, A037042, A053394, A053395, A053396, A053397, A045913, A006887
• Kayles: A002186*
• Keith numbers , sequences related to :
• Keith numbers: A007629*, A06576*
• Kempner tableaux: A005437, A005438
• Kempner-Smarandache numbers, sequences related to :
• Kempner-Smarandache numbers: A002034*, A007672
• Kendall-Mann numbers: A000140*
• Kepler's tree of fractions: A020651/A086592, A093873/A093875
• keys: A002714
• Khintchine's constant: A002210* (decimal expansion), A002211* (continued fraction)
• Kimberling puzzle: A006852, A035486
• kings problem: A002464*, A002493
• kissing numbers, sequences related to :
• kissing numbers: A001116* (all lattices), A002336 (laminated lattices), A028923 (Kappa_n), A006088 (Barnes-Wall lattices), A034597 (extremal lattice in 24n dimensions), A034598 (second nonzero coefficient)
• Klarner-Rado sequences, sequences related to :
• Klarner-Rado sequences: see A005658 and references given there
• knights , sequences related to :
• knights tours: A001230
• knights, covering board with: A006075, A006076, A098604
• knights, non-attacking: A030978*
• knights, see also (1): A003192 A005220 A005221 A005222 A005223 A018836 A018837 A018838 A018839 A018840 A018841
• knights, see also (2): A018842 A025588 A025589 A025590 A025599 A025600 A025601 A025602 A030444 A030445 A030446 A030447
• knights, see also (3): A030448 A035289 A037009 A047878 A047879 A047881 A047883 A049604
• Knopfmacher expansions: A007567, A007568, A007759
• knots, sequences related to :
• knots : A002864*, A002863*, A018891*
• knots, in a strip of paper: A049013*
• Knuth , sequences related to :
• Knuth's sequence (or Knuth numbers): A007448*, A002977
• Kobon triangles: A006066, A032765
• Kolakoski sequence, sequences related to :
• Kolakoski sequence: A000002*
• Kolakoski sequence: see also (1) A001083 A006928 A013947 A013948 A022292 A022294 A022295 A022296 A022327 A025503 A025504 A042942
• Kolakowski sequence: see Kolakoski sequence
• Kotzig factorizations:: A005702
• Kronecker (-1,n): A034947
• Kubelski sequence: A056064
• Kummer's conjecture, sequences related to :
• Kummer's conjecture: A000921, A000922, A000923
• K_12 lattice: see K12 lattice
• K_{12} lattice: see K12 lattice

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_La

• L-series: A007653, A046113
• L.C.M.: see entries under LCM
• lacing a shoe , sequences related to :
• lacing a shoe: A078601 A078629 A078674 A078602 A078675 A078676 A078698 A078700 A078702 A079410 A072503 A002866
• Laguerre polynomials, sequences related to :
• Laguerre polynomials, A021009*, A021010, A021012
• Laguerre polynomials, columns: A001805-A001807, A001809-A001812
• Laguerre polynomials, generalized, columns: A061206 A062141-A062144, A062148-A062152, A062193-A062195, A062199, A062260-A062263
• Laguerre polynomials, generalized, row sums: A062146, A062147, A062191, A062192, A062197, A062198, A062265, A062266, A066668
• Laguerre polynomials, generalized: A062137-A062140, A066667
• Laguerre polynomials, row sums: A009940*
• Lah numbers, sequences related to :
• Lah numbers, triangle of: A008297*
• Lah numbers: A001286, A001754, A001755, A001777, A001778
• Lah numbers: see also (1) A000262 A035342 A035342 A035469 A035469 A046089 A048897 A049029 A049029 A049352 A049353 A049374
• Lah numbers: see also (2) A049385 A049385 A049403 A049404 A049410 A049411 A049424
• LambertW function, sequences related to :
• LambertW function: A001662, A051711, A058955, A058956, A013703, A030178, A030179, A052807, A052880, A005172, A030797
• laminated lattices, sequences related to :
• laminated lattices, determinants of: A028921*
• laminated lattices, kissing numbers of: A002336*, A028924*
• laminated lattices, numbers of: A005135*
• laminated lattices, theta series of (1): A000122 A004016 A004015 A004011 A005930 A004007 A004008 A004009 A005933 A006909 A006910 A006911 A006912 A006913
• laminated lattices, theta series of (2): A006914 A006915 A006916 A006917 A023937 A023938 A023939 A023940 A023941 A023942 A023943 A023944 A023945 A024211
• Landau approximation: A000690
• Landau's function g(n): A000793*
• Langford pairings: see Langford-Skolem problem of arranging 11223344...nn. Langford-Skolem problem of arranging 11223344...nn: A014552, A192289, A050998, A059106, A059107, A059108, A176127, A193564
• language, words in a certain: A000802 A005819 A007055 A007056 A007057 A007058 A036995
• largest factors , sequences related to :
• largest factors of various numbers: (1) A002582 A002583 A002584 A002585 A002587 A002588 A002590 A002591 A002592 A003020 A003021 A005420
• largest factors of various numbers: (2) A005422 A006486 A007571 [this list needs to be extended]
• largest prime dividing n: A006530*, A070087, A070089
• last digits: see final digits
• last occurrence: A001463
• Latin (the language): A132984
• Latin cubes, rectangles and squares, sequences related to :
• Latin cubes: A098843 A098846 A098679 A099321
• Latin rectangles: A000186 A000512 A000513 A000516 A000536 A000573 A000576 A001009 A001568 A001623 A001624 A001625 A001626 A001627 A003170
• Latin squares, mutually orthogonal: A001438*
• Latin squares, number of: A000315* (reduced), A002860*, A003090*, A040082*, A003191
• Latin: see also Index entries for sequences related to number of letters in n
• lattice , sequences related to :
• lattice : in this index only, lattice (small l) refers to arrangements of points in space, Lattice (capital L) refers to partially ordered sets
• lattice points in various regions:: A000036, A000092, A000099, A000223, A000323, A000328, A000413, A000605
• lattice, extremal in dimension 72: A004675*
• lattices : in this index only, lattice (small l) refers to arrangements of points in space, Lattice (capital L) refers to partially ordered sets
• lattices, by determinant: A005134, A005138, A005139, A005140, A054907, A054908, A054909, A054911
• Lattices, distributive:: A006982, A006356, A006357, A006358, A006359, A006360, A006361, A006363, A006362
• lattices, eutactic: A037075, A065536
• Lattices, examples of ("meet" and "join" paired): A004198-A003986, A003989-A003990, A082858-A082860
• lattices, extreme: A033689*
• lattices, Green's function for:: A003301, A003283, A003299, A003282, A003302, A003280, A003284, A003300, A003298, A003281
• Lattices, labeled: A055512*, A058164, A058165, A058803-A058805
• lattices, laminated: A005135*
• lattices, minimal determinant of:: A005102, A005103, A005104
• lattices, minimal norm of: see minimal norm
• Lattices, modular: A006981*
• lattices, orthogonal: A007669
• lattices, paths on:: A006191, A006318, A006189, A006192, A006319, A006320, A006321
• lattices, perfect: A004026*, A065535
• lattices, polygons on:: A002931, A006781, A006782, A006772, A006783, A006773
• lattices, polymers on:: A007290, A007291
• lattices, spin-wave coefficients: A003303
• lattices, unimodular and even: A054909*
• lattices, unimodular and odd: A054911*, A054908
• lattices, unimodular, minimal norm of: A005136*
• lattices, unimodular: A005134*, A054907
• Lattices, vertically indecomposable: A058800*, A058801, A058802, A058803*, A058804, A058805
• lattices, walks on:: see walks
• Lattices: A006966* (unlabeled); A055512* (labeled)
• Lazy Caterer sequence: A000124*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Lc

• LCM , sequences related to :
• LCM of binomial coefficients: A002944
• LCM(x,y): A003990*, A051173*, A000793*, A003418*, A048691*
• LCM: see also A002944, A007463, A006580, A051426, A051193, A048619, A048671, A045948, A025557, A025556, A025527, A025558, A034890, A035105, A049073
• LCM: the canonical spelling for "least common divisor" in the OEIS is LCM (not lcm) (except of course in Maple and PARI lines)
• lcm: the canonical spelling for "least common divisor" in the OEIS is LCM (not lcm) (except of course in Maple and PARI lines)
• LCM{1,2,...,n}: A003418*, A002944
• LCM{1,3,5,...,2n+1}: A025547*
• least common multiple: see entries under LCM
• least k such that the remainder when X^k is divided by k is n where X = 2..32 , sequences related to :
• least k such that the remainder when X^k is divided by k is n where X = 2..32 (01): A036236, A078457, A119678, A119679, A127816, A119715, A119714, A127817, A127818, A127819, A127820, A127821,
• least k such that the remainder when X^k is divided by k is n where X = 2..32 (02): A128154, A128155, A128156, A128157, A128158, A128159, A128160, A128361, A128362, A128363, A128364, A128365,
• least k such that the remainder when X^k is divided by k is n where X = 2..32 (03): A128366, A128367, A128368, A128369, A128370, A128371, A128372,
• least k such that the remainder when X^k is divided by k is n where X = 2..32 (04): see also: A126762
• Least number of powers to represent n:: A002828, A002377, A151925
• least significant bit (lsb): A000035
• Leech , sequences related to :
• Leech lattice, odd: A027859*
• Leech lattice, shorter: A004537*, A029754*
• Leech lattice, theta series of: A008408*
• Leech triangle: A001293*
• Leech's path-labeling problem: A034470*
• Leech's tree-labeling problem: A007187*
• left factorials: A003422*
• Legendre , sequences related to :
• Legendre polynomials:: A008316*, A001797, A001798, A001801, A002461, A001796, A001800, A002463, A001802, A001795, A001799, A006750, A002462
• Legendre's conjecture: A007491, A014085, A053000, A053001
• LEGO blocks, sequences related to :
• LEGO blocks: A007575, A007576
• Lehmer's constant: A002665*, A030125*, A002794*/A002795*, A002065
• Lehmer's polynomial: A070178
• Leibniz's triangle: see harmonic triangle of Leibniz
• lemniscate function, or Weierstrass P-function: A002306*/A047817*, A002770
• Lemoine's conjecture: A046927
• length of n in binary: A070939
• Length of runs:: A000002, A001250, A001251, A001252, A001253, A000303, A000402, A000434, A000456, A000467, A000517
• Leonardo logarithms: A001179
• Les Marvin sequence: A007502
• letters in n , sequences related to :
• letters in n (in English): A005589*, A006944
• letters in n (in other languages) (1): A001050 (Finnish), A001368 (Irish Gaelic), A003078 (Danish), A006968 or A092196 (Roman numerals), A007005 or A006969 (French), A006994 (Russian), A007208 (German), A007292 (Hungarian), A007485 or A090589 (Dutch),
• letters in n (in other languages) (2): A008962 (Polish), A010038 (Czech), A011762 (Spanish), A027684 (Hebrew, dotted), A051785 (Catalan), A026858 (Italian), A056597 (Serbian or Croatian), A057435 (Turkish), A132984 (Latin), A140395 (Hindi),
• letters in n (in other languages) (3): A053306 (Galego), A057696 (Brazilian Portuguese), A057853 (Esperanto), A059124 (Swedish), A030166, A112348, A112349 and A112350 (Chinese), A030166 (Japanese Kanji), A140396 (Welsh), A140438 (Tamil)
• letters in n (in other languages) (4): A014656 (Bokmal), A028292 (Nynorsk)
• Levenshtein distance (1); A010097, A080910, A080950, A081230, A081355, A081356, A081732, A083311, A083381, A091090,
• Levenshtein distance (2); A091091, A091092, A091093, A091110, A091111, A097720, A097721, A097722, A106028, A106432,
• Levenshtein distance (3); A109378, A109380, A109382, A109809, A109811, A115777, A115778, A115779, A115780, A118757, A118763
• Levine's sequence: A011784*
• Levy's conjecture: A046927

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Li

• Li(n): A047783, A047784, A047785
• Lie algebras , sequences related to :
• Lie algebras, dimensions of: A001066*, A003038*, A038539*
• Lie algebras, filiform: A055614
• Lie algebras, see also (1): A005018 A005233 A005423 A005433 A005453 A005454 A005455 A005456 A005457 A005458 A005459
• Lie algebras, see also (2): A005496 A005555 A007851 A007988 A007990 A007991 A007993 A007994 A007995 A028351 A030647
• light, speed of: A003678*
• light-bulb game of Berlekamp: A005311
• linear extensions, sequences related to :
• linear extensions: A114717, A114714, A114715, A114716, A000111, A046873, A060854, A039622
• linear forms: A004059, A057561
• linear inequalities: A002797
• linear orders: A006455*
• linear recurrences with constant coefficients: see recurrence, linear, constant coefficients
• linear spaces, sequences related to :
• linear spaces: A056642, A001199, A002877, A002876, A001548
• lines, number of ways of arranging: A048872*, A048873*, A003036*
• lines, ordinary: A003034
• Linus sequence: A006345
• Liouville , sequences related to :
• Liouville's constant: A012245
• Liouville's function L(n): A002819*, A002053
• Liouville's function lambda(n): A008836*, A056912, A056913, A026424, A028260
• Liouville's number: A012245
• list manipulation functions of Lisp and similar programming languages, sequences induced by , :
• list manipulation functions of Lisp and similar programming languages, sequences induced by, (These act on symbolless S-expressions encoded by A014486/A063171, usually giving as their result an index therein.)
• list manipulation functions of Lisp, append, A085201
• list manipulation functions of Lisp, car, A072771
• list manipulation functions of Lisp, cdr, A072772
• list manipulation functions of Lisp, cons, A072764
• list manipulation functions of Lisp, length, A057515
• list manipulation functions of Lisp, list, 1-ary, A057548
• list manipulation functions of Lisp, list, 2-ary, A085205
• list manipulation functions of Lisp, reverse, A057508, A033538
• list manipulation functions of Lisp: see also signature-permutations induced by Catalan automorphisms
• list manipulation functions of Lisp: see also rooted trees, plane, encodings of
• list merging, sorting by: A003071
• lists of sets: A002869
• literal reading of prime factorization: A037276, A067599, A080670
• ln: see log

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Lo

• locks: A002050*
• Loeschian numbers: A003136*
• log , sequences related to logarithms :
• log 10, decimal expansion of: A002392*
• log 2, decimal expansion of: A002162*
• log 3, decimal expansion of: A002391*
• log 5, decimal expansion of: A016628*
• log 7, decimal expansion of: A016630*
• log(3/2): A016529, A016578
• log(cos(x)): A046990/A046991
• log(n)*2^n/n: A065613, A065614, A065616, A065617, A065618
• log(n): A000195*, A000193*, A004233*
• log(sin(x)/x): A046988/A046989
• logarithmic integral: see Li(n)
• logarithmic numbers, sequences related to :
• logarithmic numbers: (1) A000522 A002104 A002206 A002207 A002741 A002742 A002743 A002744 A002745 A002746 A002747 A002748
• logarithmic numbers: (2) A002749 A002750 A002751 A007553
• log_10 e, decimal expansion of: A002285*
• log_2 3: continued fraction for, A028507, A005663, A005664; decimal expansion, A020857
• log_2(n): A000523, A004257, A029837, A020857-A020864, A152590
• log_3(n): A102524, A100831, A113209, A102525, A152565, A113210, A152566, A152549, A152564
• long but finite sequences: see finite sequences with a large number of terms
• longest common subsequence: A094837, A094838, A094858, A094859, A094863, A094860, A094861, A094862, A094863, A094291
• longest common substring: A094824
• look and say sequences: A005150, A045918; but see entries under "say what you see"
• loops, sequences related to :
• loops, in digits: A001729, A001742, A034905
• loops, in hypercubes: A043546
• loops, Moufang: A000373
• loops: A000644, A007746
• Lorentzian modular group: A005793, A005794
• Losanitsch's triangle: A034851*, A034852, A034877, A034872, A032123
• low discrepancy sequences: A005356, A005357, A005358, A005377
• low temperature series , sequences related to :
• low temperature series (1): A002890 A002891 A002909 A002915 A002926 A002927 A007214 A007215 A007216 A007217 A007218 A007270
• low temperature series (2): A007271 A029872 A029873 A029874 A030045 A030046 A030047 A047710
• loxodromic sequence of spheres: A027674*
• Loxton-van der Poorten sequence: A006288*
• Loyd's 15-Puzzle: see Fifteen Puzzle
• LS ("Look and Say"): A045918; see also "say what you see"
• lsb = least significant bit: A000035

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Lu

• Lucas , sequences related to :
• Lucas numbers, generalized: A006490, A006491, A006492, A006493
• Lucas numbers, prime: see primes, Lucas numbers
• Lucas numbers: A000032*, A000204*
• Lucas numbers: see also A003263, A001606, A006490, A005479, A005372, A006491, A005371, A002878, A006492, A004146, A006493, A005970, A005971, A005972, A006972, A005845
• Lucas polynomials: A034807*, A061896
• Lucas pseudoprimes: see pseudoprimes
• Lucas, Theorie des Nombres, on the web: see A008288
• Lucas-Carmichael numbers: A006972*
• Lucasian primes: see primes, Lucasian
• lucky numbers, sequences related to :
• lucky numbers: A000959*
• lucky numbers: even: A045954*
• Lukasiewicz words , Lukasiewicz words, sequences related to
• Lukasiewicz words: A071152, A071153, A071160
• Lyndon words , sequences related to :
• Lyndon words , A001037*, A001840, A006206, A006918, A011795-A011797, A011845, A031164, A032168, A032169, A032321*, A051170, A051172
• Lyndon words, 10-colored, A032165*
• Lyndon words, 11-colored, A032166*
• Lyndon words, 12-colored, A032167*
• Lyndon words, 3-colored, A027376*, A032322*, A046209, A046211
• Lyndon words, 4-colored, A027377*, A032323*
• Lyndon words, 5-colored, A001692*, A032324*
• Lyndon words, 6-colored, A032164*
• Lyndon words, 7-colored, A001693*
• Lyndon words, balanced (1): A000048, A000150, A000740, A022553*, A029808, A029809, A045632, A050180-A050185
• Lyndon words, balanced (2): A074651-A075657
• Lyndon words, complements are equivalent, A000048, A000740, A045632
• Lyndon words, triangle: A051168*, A052314, A074650
• Lyndon words: see also (1): A002730, A032134-A032142, A032144-A032150, A032153-A032159, A032170, A032325-A032332, A045680
• lyrics, see: songs, popular
• L_infinity norms , sequences related to :
• L_infinity norms in lattices: A010014, A022144, A110907, A117216

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_M

• m-sequences , sequences related to :
• m-sequences, binary, examples of: A011655 A011656 A011657 A011659 A011660 A011661 A011662 A011663 A011664 A011665
• m-sequences, binary, more examples: A011666 A011667 A011668 A011669 A011670 A011671 A011673 A011674 A011675 A011676
• m-sequences, binary, more examples: A011677 A011678 A011679 A011680 A011681 A011682 A011683 A011684 A011685 A011686
• m-sequences, binary, more examples: A011687 A011688 A011689 A011690 A011691 A011692 A011693 A011694 A011695 A011696
• m-sequences, binary, more examples: A011697 A011698 A011699 A011700 A011701 A011702 A011703 A011704 A011705 A011706
• m-sequences, binary, more examples: A011707 A011708 A011709 A011710 A011711 A011712 A011713 A011714 A011715 A011716
• m-sequences, binary, more examples: A011717 A011718 A011719 A011720 A011721 A011722 A011723 A011724 A011725 A011726
• m-sequences, binary, more examples: A011727 A011728 A011729 A011730 A011731 A011732 A011733 A011734 A011735 A011736
• m-sequences, binary, more examples: A011737 A011738 A011739 A011740 A011741 A011742 A011743 A011744 A011745
• m-sequences, enumeration of: A000110 A000125 A003659 A007065 A007625 A007723 A011802 A011803 A011804 A011805
• m-sequences, enumeration of; cont.: A011806 A011807 A011808 A011809 A011810 A011811 A011812 A011813 A011814 A011815
• m-sequences, enumeration of; cont.: A011816 A011817 A011819 A011819 A011820 A011820 A011821 A011822 A011823 A011824 A011825
• M-sequences: see m-sequences
• M-trees: A006959*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Mag

• magic numbers, sequences related to :
• magic numbers: A004210*, A005902*, A018226, A018227, A033547, A046939, A046940
• magic series: A052456, A052457, A052458
• magic squares : sequences related to :
• magic squares, 3 X 3: A033812, A024351, A073473, A073519, A073350
• magic squares, 4 X 4: A073521, A032530
• magic squares, 5 X 5: A073522
• magic squares, 6 X 6: A073523
• magic squares, antimagic: A050257
• magic squares, from primes: A073473, A024351, A073519, A073521, A073522, A073523, A073350, A073502, A073520
• magic squares, number of: A006052*
• magic squares, panmagic: A027567, A051235
• magic squares, row sums: A006003
• magic squares, smallest magic constant: A073502, A073520
• magic squares, stochastic matrices: A000681, A005650, A001500
• magnetization coefficients, sequences related to :
• magnetization coefficients: (1) A002928 A002929 A002930 A003193 A003196 A007206 A007207 A010102 A010103 A010104 A010105 A010106
• magnetization coefficients: (2) A030120 A030121 A057374 A057378 A057382 A057386 A057390 A057394 A057398 A057402
• Mahler's number: see Champernowne constant
• Mahonian numbers: A008302*
• making change for n cents , sequences related to :
• making change for n cents (1): A000008 A001299 A001300 A001301 A001302 A001306 A001310 A001312 A001313 A001314 A001319 A001343
• making change for n cents (2): A001362 A001364 A002426 A011542 A053344
• malicious apprentice problem: A057716, A074894*
• Mancala , sequences related to :
• Mancala solitaire (generalized): {k=0..12} A002491, A000960 (Flavius Josephus's sieve), A112557, A112558, A113742, A113743, A113744, A113745, A113746, A113747, A113748; det. A113749
• Mandelbrot set:: A006874, A006875, A006876
• Mangoldt function: A029832, A029833, A029834, A053821
• Manhattan lattice: A006744, A006745, A006781
• Manhattan subways: A001049, A011554
• manifolds: A005026*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Map

• map, 3x+1: see 3x+1 problem
• Maple code for computing positions of 0's in decimal expansion of Pi (say): A014976
• mappings , sequences related to :
• mappings, fixed points of, see: fixed points of mappings
• mappings, labeled: A000312
• maps , sequences related to :
• maps on n points: A001372*
• Maps, 2-connected, A006445, A005645, A006444, A006403, A006407, A006406, A006405, A006404
• Maps, A006399, A006398, A006397, A006396, A006384, A005027, A006391, A006390, A006389, A006388, A006961, A001372*, A003620, A006393, A006392, A006343, A003621, A005945, A005946
• Maps, almost trivalent, A002006, A002012, A002005, A002008, A002010, A002007, A002009
• maps, coloring: A000934*, A000703
• Maps, connected, A006443, A006385
• maps, folding: A001417*
• Maps, genus 1, A006387, A006386
• Maps, Hamiltonian, A000264, A000356
• Maps, nonseparable, A006402
• maps, planar: A000184, A000365, A000473, A000502, A006294, A006295, A006384, A006385
• Maps, regions in, A006683
• maps, rooted (1):: A000087, A006470, A000184, A000257, A000259, A000305, A000309, A006302, A006294, A006468, A006471, A000365, A006419, A006416
• maps, rooted (2):: A006469, A006295, A006297, A000473, A006420, A006417, A006298, A006299, A006301, A006421, A006303, A006418, A000502, A006296
• Maps, self-dual, A006849
• Maps, symmetric, A005028
• Maps, toroidal, A006408, A006422, A006425, A006415, A006434, A006439, A006414, A006409, A006436, A006423, A006426, A006441, A006435, A006440, A006300, A006410, A006424, A006427, A006437
• Maps, tree-rooted, A004304, A002740, A006411, A006428, A006432, A006412, A006429, A006433, A006413, A006430
• Maps, tumbling distance for, A005947, A005948, A005949
• Maris-McGwire numbers: A045759
• Markoff numbers: A002559*
• Markov numbers: see Markoff numbers

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Mat

• matchings, sequences related to :
• matchings:: A005154
• mathematical symbols in OEIS: see spelling and notation
• matrices, sequences related to :
• matrices, (+1,-1): see matrices, binary
• matrices, (0,1): see matrices, binary
• matrices, alternating sign , sequences related to :
• matrices, alternating sign: (1) A005130*, A006366*, A003827, A005156, A005158, A005160-A005164, A048601, A050204, A051055, A057629, A059475, A059476, A059486
• matrices, alternating sign: (2) A128445, A109074/A134357
• matrices, binary , sequences related to :
• matrices, binary - refers to matrices with entries of both types, real (or complex) or over a finite field
• matrices, binary, 3 X n: A006381, A002727
• matrices, binary, 4 X n: A006380, A006382, A006148
• matrices, binary, n X n: complex eigenvalues: A098148
• matrices, binary, n X n: A000595* (equivalence classes under S_n), A006383 (equivalence classes under S_n X S_n)
• matrices, binary, n X n: det = 1: A086264
• matrices, binary, n X n: diagonalizable: A091470, A091471, A091472
• matrices, binary, n X n: eigenvalues all = 1 but not positive definite: see A085657
• matrices, binary, n X n: invertible: A002884* (over GF(2)), A055165 ({0,1}, rational)
• matrices, binary, n X n: maximal determinant: A003432*, A003433*, A013588
• matrices, binary, n X n: normal: A055547 A055548 A055549
• matrices, binary, n X n: positive definite: A085656 (entries 0,1, rational), A085657 (entries 2,1,0, symmetric), A084552 (entries 2,-1,0, symmetric), A080858
• matrices, binary, n X n: positive eigenvalues: A003024 (entries 0,1), A085506 (entries 0, +-1)
• matrices, binary, n X n: positive semi-definite: A038379 (entries 0,1, rational), A085658 (entries 2,1,0, symmetric), A084553 (entries 2,-1,0, symmetric), A083029
• matrices, binary, n X n: primitive: A070322
• matrices, binary, n X n: singular: A000409*, A000410*, A046747* (rational)
• matrices, binary, n X n: with k 1's in each row and column: A000142, A001499, A001501, A058528, A075754
• matrices, binary, n X n: zero permanent: A088672
• matrices, binary, permanents of: A000255 A052655 A087981 A087982 A087983 A088672
• matrices, binary, upper triangular: A005321*
• matrices, binary, with n 1's: A049311*
• matrices, binary, with no 2 adjacent 1's: A006506*
• matrices, binary, with no zero rows or columns: A048291, A054976
• matrices, binary: see also A002820, A000804, A000805, A003509, A005991, A002724, A005019, A005020
• matrices, conference: A000952*
• matrices, cyclic: A000804, A000805
• Matrices, Hilbert, A005249
• Matrices, incidence, A002725, A002728
• Matrices, modular, A005045, A006045, A005353
• matrices, normal: A055547 A055548 A055549
• Matrices, norms of, A004141
• Matrices, Pascal, A006135, A006136
• Matrices, random, A001171
• Matrices, Schur, A003112
• Matrices, stochastic, A006847, A006848, A000987, A000985, A001495, A000681, A000986, A001500, A001499, A001496, A001501, A005466, A003438, A005467, A003439
• matrices, ternary - refers to matrices with entries of both types, real (or complex) or over a finite field
• matrices, ternary, n X n: A053290, A056989
• Matrices:: A002136, A005020, A005045, A007411, A006045, A005353, A005019
• matrix, coprime?: A005326*
• matroids , sequences related to :
• matroids, triangle of number of: A034327, A034328, A058669, A053534, A058710, A058711, A058716, A058717, A058720, A058730
• matroids: A002773*, A055545*, A005387*, A056642*, A058673*, A058712*, A058718*, A058721*
• matroids: see also A034329 A034330 A034331 A034332 A034333 A034334 A034335 A034336
• Maundy cake: A006022
• Max Alekseyev's problem: see doubling substrings
• max(x,y): A003984*, A051125*
• maximal digit in n in bases 3 through 12: A190592, A190593, A190594, A190595, A190596, A190597, A190598, A054055, A190599, A190600.
• maximal intersecting families of sets: A007006, A007007, A007008
• McKay-Thompson sequences or series, sequences related to :
• McKay-Thompson sequences for Monster simple group: see McKay-Thompson series
• McKay-Thompson series of class 001A: A000521 A007240 A014708
• McKay-Thompson series of class 001a: A154272
• McKay-Thompson series of class 002A: A007241 A007267 A045478 A101558
• McKay-Thompson series of class 002a: A007242
• McKay-Thompson series of class 002B: A007191 A007246 A045479
• McKay-Thompson series of class 002b: A154272
• McKay-Thompson series of class 003A: A007243 A030197 A045480
• McKay-Thompson series of class 003B: A007244 A030182 A045481
• McKay-Thompson series of class 003C: A007245
• McKay-Thompson series of class 004A: A007246 A045479 A107080 A134786
• McKay-Thompson series of class 004a: A007250
• McKay-Thompson series of class 004B: A007247
• McKay-Thompson series of class 004C: A007248
• McKay-Thompson series of class 004D: A007249
• McKay-Thompson series of class 005A: A007251 A045482
• McKay-Thompson series of class 005a: A007253
• McKay-Thompson series of class 005B: A007252 A045483
• McKay-Thompson series of class 006A: A007254 A045484
• McKay-Thompson series of class 006a: A007260
• McKay-Thompson series of class 006B: A007255 A045485
• McKay-Thompson series of class 006b: A007261
• McKay-Thompson series of class 006C: A007256 A045486
• McKay-Thompson series of class 006c: A007262
• McKay-Thompson series of class 006D: A007257 A045487
• McKay-Thompson series of class 006d: A007263
• McKay-Thompson series of class 006E: A007258 A045488 A105559 A128632 A128633
• McKay-Thompson series of class 006F: A007259
• McKay-Thompson series of class 007A: A007264 A030183 A045489
• McKay-Thompson series of class 007B: A030181 A052240
• McKay-Thompson series of class 008A: A007265 A045490 A134785
• McKay-Thompson series of class 008a: A112144
• McKay-Thompson series of class 008b: A058088
• McKay-Thompson series of class 008B: A112142
• McKay-Thompson series of class 008C: A052241
• McKay-Thompson series of class 008c: A112145
• McKay-Thompson series of class 008D: A112143
• McKay-Thompson series of class 008E: A029841
• McKay-Thompson series of class 008F: A022601
• McKay-Thompson series of class 009A: A007266 A045491
• McKay-Thompson series of class 009a: A058092
• McKay-Thompson series of class 009B: A058091
• McKay-Thompson series of class 009b: A112146
• McKay-Thompson series of class 009c: A058095
• McKay-Thompson series of class 009d: A058096
• McKay-Thompson series of class 010A: A058097
• McKay-Thompson series of class 010a: A058102
• McKay-Thompson series of class 010B: A058098
• McKay-Thompson series of class 010b: A058103
• McKay-Thompson series of class 010C: A058099
• McKay-Thompson series of class 010c: A058204
• McKay-Thompson series of class 010D: A058100 A132130
• McKay-Thompson series of class 010E: A058101 A138516 A139381
• McKay-Thompson series of class 011A: A003295 A058205 A134784 A128525
• McKay-Thompson series of class 012a: A058489
• McKay-Thompson series of class 012A: A112147
• McKay-Thompson series of class 012B.: A045488 A007258 A112148
• McKay-Thompson series of class 012b: A058490
• McKay-Thompson series of class 012C: A058206
• McKay-Thompson series of class 012c: A058491
• McKay-Thompson series of class 012d: A058492
• McKay-Thompson series of class 012D: A101127
• McKay-Thompson series of class 012E: A058483
• McKay-Thompson series of class 012e: A058493
• McKay-Thompson series of class 012F: A058484
• McKay-Thompson series of class 012f: A112149
• McKay-Thompson series of class 012G: A058485
• McKay-Thompson series of class 012H: A058486
• McKay-Thompson series of class 012I: A058487
• McKay-Thompson series of class 012J: A022599
• McKay-Thompson series of class 013A: A034318 A034319
• McKay-Thompson series of class 013B: A058496
• McKay-Thompson series of class 014A: A058497 A134782
• McKay-Thompson series of class 014a: A058505
• McKay-Thompson series of class 014B: A058503
• McKay-Thompson series of class 014b: A058506
• McKay-Thompson series of class 014C: A058504
• McKay-Thompson series of class 014c: A058507
• McKay-Thompson series of class 015A: A058508 A134783
• McKay-Thompson series of class 015a: A058512
• McKay-Thompson series of class 015B: A058509
• McKay-Thompson series of class 015b: A058513
• McKay-Thompson series of class 015C: A058510
• McKay-Thompson series of class 015D: A058511
• McKay-Thompson series of class 016A: A058514
• McKay-Thompson series of class 016a: A112150
• McKay-Thompson series of class 016B: A029839
• McKay-Thompson series of class 016b: A112151
• McKay-Thompson series of class 016C: A058516
• McKay-Thompson series of class 016c: A112152
• McKay-Thompson series of class 016d: A082304
• McKay-Thompson series of class 016e: A058526
• McKay-Thompson series of class 016f: A112153
• McKay-Thompson series of class 016g: A112154
• McKay-Thompson series of class 016h: A112155
• McKay-Thompson series of class 017A: A058530
• McKay-Thompson series of class 018A: A058531
• McKay-Thompson series of class 018a: A058536
• McKay-Thompson series of class 018B: A058532
• McKay-Thompson series of class 018b: A058537
• McKay-Thompson series of class 018C: A058533
• McKay-Thompson series of class 018c: A058538
• McKay-Thompson series of class 018d: A058539
• McKay-Thompson series of class 018D: A062242
• McKay-Thompson series of class 018E: A058535
• McKay-Thompson series of class 018e: A058543
• McKay-Thompson series of class 018f: A058544
• McKay-Thompson series of class 018g: A112156
• McKay-Thompson series of class 018h: A058546
• McKay-Thompson series of class 018i: A112157
• McKay-Thompson series of class 018j: A058548
• McKay-Thompson series of class 019A: A058549 A136569
• McKay-Thompson series of class 020a: A058556
• McKay-Thompson series of class 020A: A112158
• McKay-Thompson series of class 020B: A058551
• McKay-Thompson series of class 020b: A058557
• McKay-Thompson series of class 020c: A058558
• McKay-Thompson series of class 020C: A112159
• McKay-Thompson series of class 020D: A058553
• McKay-Thompson series of class 020d: A058559
• McKay-Thompson series of class 020E: A058554
• McKay-Thompson series of class 020e: A058560
• McKay-Thompson series of class 020F: A058555
• McKay-Thompson series of class 021A: A058563
• McKay-Thompson series of class 021B: A058564
• McKay-Thompson series of class 021C: A058565
• McKay-Thompson series of class 021D: A058566
• McKay-Thompson series of class 022A: A058567
• McKay-Thompson series of class 022a: A058569
• McKay-Thompson series of class 022B: A058568
• McKay-Thompson series of class 023A: A058570 A134781
• McKay-Thompson series of class 024A: A058571 A058572
• McKay-Thompson series of class 024a: A058584
• McKay-Thompson series of class 024B: A058572
• McKay-Thompson series of class 024b: A112162
• McKay-Thompson series of class 024C: A058573
• McKay-Thompson series of class 024c: A062243
• McKay-Thompson series of class 024D: A058574
• McKay-Thompson series of class 024d: A058587
• McKay-Thompson series of class 024E: A112160
• McKay-Thompson series of class 024e: A112163
• McKay-Thompson series of class 024F: A058576
• McKay-Thompson series of class 024f: A058589
• McKay-Thompson series of class 024G: A112161
• McKay-Thompson series of class 024g: A112164
• McKay-Thompson series of class 024H: A058578
• McKay-Thompson series of class 024h: A112165
• McKay-Thompson series of class 024I: A058579 A138688
• McKay-Thompson series of class 024i: A112166
• McKay-Thompson series of class 024J: A022597
• McKay-Thompson series of class 024j: A112167
• McKay-Thompson series of class 025A: A058594
• McKay-Thompson series of class 025a: A096563
• McKay-Thompson series of class 026A: A058596
• McKay-Thompson series of class 026a: A058598
• McKay-Thompson series of class 026B: A058597
• McKay-Thompson series of class 027A: A058599
• McKay-Thompson series of class 027a: A058600
• McKay-Thompson series of class 027B: A058599
• McKay-Thompson series of class 027b: A058601
• McKay-Thompson series of class 027c: A062246
• McKay-Thompson series of class 027d: A058604
• McKay-Thompson series of class 027e: A112168
• McKay-Thompson series of class 028A: A058606
• McKay-Thompson series of class 028a: A058610
• McKay-Thompson series of class 028B: A112169
• McKay-Thompson series of class 028C: A058608
• McKay-Thompson series of class 028D: A058609
• McKay-Thompson series of class 029A: A058611 A136570
• McKay-Thompson series of class 030A: A058612
• McKay-Thompson series of class 030a: A058619
• McKay-Thompson series of class 030B: A058613
• McKay-Thompson series of class 030b: A058623
• McKay-Thompson series of class 030C: A058614
• McKay-Thompson series of class 030c: A058624
• McKay-Thompson series of class 030D: A058615
• McKay-Thompson series of class 030d: A058625
• McKay-Thompson series of class 030E: A058616
• McKay-Thompson series of class 030e: A058626
• McKay-Thompson series of class 030F: A058617
• McKay-Thompson series of class 030f: A112170
• McKay-Thompson series of class 030G: A058618 A135213
• McKay-Thompson series of class 031A: A058628
• McKay-Thompson series of class 032A: A058629
• McKay-Thompson series of class 032a: A107635
• McKay-Thompson series of class 032B: A058630
• McKay-Thompson series of class 032b: A058632
• McKay-Thompson series of class 032c: A112171
• McKay-Thompson series of class 032d: A112172
• McKay-Thompson series of class 032e: A082303
• McKay-Thompson series of class 033A: A058636
• McKay-Thompson series of class 033B: A058637
• McKay-Thompson series of class 034A: A058638
• McKay-Thompson series of class 034a: A058639
• McKay-Thompson series of class 035A: A058640
• McKay-Thompson series of class 035a: A058643
• McKay-Thompson series of class 035B: A058641
• McKay-Thompson series of class 036A: A058644
• McKay-Thompson series of class 036a: A058648
• McKay-Thompson series of class 036B: A062244
• McKay-Thompson series of class 036b: A112173
• McKay-Thompson series of class 036C: A058646
• McKay-Thompson series of class 036c: A058650
• McKay-Thompson series of class 036D: A058647
• McKay-Thompson series of class 036d: A112174
• McKay-Thompson series of class 036e: A112175
• McKay-Thompson series of class 036f: A112176
• McKay-Thompson series of class 036g: A103262
• McKay-Thompson series of class 036h: A112177
• McKay-Thompson series of class 036i: A112178
• McKay-Thompson series of class 038A: A058657
• McKay-Thompson series of class 038a: A058658
• McKay-Thompson series of class 039A: A058659
• McKay-Thompson series of class 039B: A058660
• McKay-Thompson series of class 039C: A058661
• McKay-Thompson series of class 040A: A058662
• McKay-Thompson series of class 040a: A112180
• McKay-Thompson series of class 040b: A058666
• McKay-Thompson series of class 040B: A112179
• McKay-Thompson series of class 040C: A058664
• McKay-Thompson series of class 040c: A112181
• McKay-Thompson series of class 040d: A112182
• McKay-Thompson series of class 040e: A112183
• McKay-Thompson series of class 041A: A058670
• McKay-Thompson series of class 042A: A058671
• McKay-Thompson series of class 042a: A058675
• McKay-Thompson series of class 042B: A058672
• McKay-Thompson series of class 042b: A058676
• McKay-Thompson series of class 042c: A058677
• McKay-Thompson series of class 042C: A102314
• McKay-Thompson series of class 042D: A058674
• McKay-Thompson series of class 042d: A058678
• McKay-Thompson series of class 044A: A058679
• McKay-Thompson series of class 044a: A058680
• McKay-Thompson series of class 044b: A112184
• McKay-Thompson series of class 044c: A058683
• McKay-Thompson series of class 045A: A058684
• McKay-Thompson series of class 045a: A058685
• McKay-Thompson series of class 045b: A058686
• McKay-Thompson series of class 045c: A112185
• McKay-Thompson series of class 046A: A058688
• McKay-Thompson series of class 046B: A058688
• McKay-Thompson series of class 046C: A058689
• McKay-Thompson series of class 046D: A058689
• McKay-Thompson series of class 047A: A058690
• McKay-Thompson series of class 048A: A058691
• McKay-Thompson series of class 048a: A112186
• McKay-Thompson series of class 048b: A112187
• McKay-Thompson series of class 048c: A112188
• McKay-Thompson series of class 048d: A112189
• McKay-Thompson series of class 048e: A112190
• McKay-Thompson series of class 048f: A112191
• McKay-Thompson series of class 048g: A073252
• McKay-Thompson series of class 048h: A112192
• McKay-Thompson series of class 049a: A058700
• McKay-Thompson series of class 049a: A136560
• McKay-Thompson series of class 050a: A034320
• McKay-Thompson series of class 050A: A058701
• McKay-Thompson series of class 050a: A058703
• McKay-Thompson series of class 051A: A058704
• McKay-Thompson series of class 052A: A058705
• McKay-Thompson series of class 052a: A058707
• McKay-Thompson series of class 052B: A058706
• McKay-Thompson series of class 054A: A058708
• McKay-Thompson series of class 054a: A058709
• McKay-Thompson series of class 054b: A112193
• McKay-Thompson series of class 054c: A112194
• McKay-Thompson series of class 054d: A112195
• McKay-Thompson series of class 055A: A058713
• McKay-Thompson series of class 056A: A058714
• McKay-Thompson series of class 056a: A112196
• McKay-Thompson series of class 056B: A097793
• McKay-Thompson series of class 056b: A112197
• McKay-Thompson series of class 056c: A112198
• McKay-Thompson series of class 057A: A112199
• McKay-Thompson series of class 058a: A058723
• McKay-Thompson series of class 059A: A058724
• McKay-Thompson series of class 060A: A058725
• McKay-Thompson series of class 060a: A112200
• McKay-Thompson series of class 060B: A058726
• McKay-Thompson series of class 060b: A058732
• McKay-Thompson series of class 060C: A058727
• McKay-Thompson series of class 060c: A112201
• McKay-Thompson series of class 060D: A058728 A143751
• McKay-Thompson series of class 060d: A112202
• McKay-Thompson series of class 060E: A058729
• McKay-Thompson series of class 060e: A112203
• McKay-Thompson series of class 060F: A096938
• McKay-Thompson series of class 062A: A058736
• McKay-Thompson series of class 063a: A112204
• McKay-Thompson series of class 064a: A070048
• McKay-Thompson series of class 066A: A058739
• McKay-Thompson series of class 066a: A058741
• McKay-Thompson series of class 066B: A058740
• McKay-Thompson series of class 068A: A058742
• McKay-Thompson series of class 069A: A058743
• McKay-Thompson series of class 070A: A058744
• McKay-Thompson series of class 070a: A058746
• McKay-Thompson series of class 070B: A058745
• McKay-Thompson series of class 071A: A034322
• McKay-Thompson series of class 072a: A112205
• McKay-Thompson series of class 072b: A112206
• McKay-Thompson series of class 072c: A112207
• McKay-Thompson series of class 072d: A112208
• McKay-Thompson series of class 072e: A003105
• McKay-Thompson series of class 076a: A058753
• McKay-Thompson series of class 078A: A058754
• McKay-Thompson series of class 078B: A058755
• McKay-Thompson series of class 080a: A112209
• McKay-Thompson series of class 082a: A112210
• McKay-Thompson series of class 084A: A058758
• McKay-Thompson series of class 084a: A058761
• McKay-Thompson series of class 084B: A112211
• McKay-Thompson series of class 084C: A112212
• McKay-Thompson series of class 087A: A058762
• McKay-Thompson series of class 088A: A112213
• McKay-Thompson series of class 090a: A112214
• McKay-Thompson series of class 090b: A112215
• McKay-Thompson series of class 092A: A112216
• McKay-Thompson series of class 093A: A112217
• McKay-Thompson series of class 094A: A058768
• McKay-Thompson series of class 095A: A058769
• McKay-Thompson series of class 096a: A000700
• McKay-Thompson series of class 102a: A112218
• McKay-Thompson series of class 104A: A112219
• McKay-Thompson series of class 105A: A058773
• McKay-Thompson series of class 110A: A058774
• McKay-Thompson series of class 117a: A112220
• McKay-Thompson series of class 119A: A058776
• McKay-Thompson series of class 120a: A112221
• McKay-Thompson series of class 126a: A112222
• McKay-Thompson series of class 132a: A112223
• McKay-Thompson series of class 140a: A112224

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Me

• meanders , sequences related to :
• meanders: A005315*, A005316*
• meanders: see also (1): A000257 A000560 A000682 A006657 A006658 A006659 A006660 A006661 A006662 A006663 A006664 A007746 A008828 A046690
• meanders: see also (2): A046691 A046721 A046722 A046723 A046724 A046725 A046726
• meanders: see also (3): A060066 A060089 A060111 A060148 A060149 A060174 A060198 A060206 A076875* A076876* A076906* A076907*
• Meeussen sequences: A008934*
• menage numbers, sequences related to :
• menage numbers: A000179*, A000904*
• mens-room permutations: see pay-phones
• merge sort: A001768
• Mersenne , sequences related to :
• Mersenne numbers 2^p-1: A001348*, A000668*, A000043*, A000225
• Mersenne primes: A000668* (primes of form 2^p-1), A000043* (p values)
• Mertens , sequences related to :
• Mertens's conjecture: A059571*, A059572, A059581
• Mertens's function: A002321*
• Mertens's function: inverse of: A051400, A051401, A051402, A060434
• Mertens's function: zeros of: A028442
• mex (minimal excluded value) = least nonnegative integer not in the set: A080240, A080241
• Mian-Chowla sequences, sequences related to :
• Mian-Chowla sequences: A005282, A051788, A058335
• Miller-Rabin primality test: see pseudoprimes
• Mills primes: A051254*
• Mills's constant: A051021*
• min(x,y): A003983*, A004197*
• minimal norm, sequences related to :
• minimal norm: A005136 A006984 A028950 A029550 A029551 A029755 A029756 A038501
• minimal numbers: A007416
• minimal sequence: A002938
• Minkowski's question mark function, sequences related to :
• Minkowski's question mark function, fixed points: A058914*, A120221*, A048817, A048818, A048819, A048820, A048821, A048822
• Minkowski's question mark function, global maximum of ?(x)-x: A119719
• Minkowski's question mark function, inverse: A065937
• Minkowski's question mark function, values obtained at: 1/Pi: A119926 (A119927), 6/Pi^2: A119922 (A119923), Pi: A119924 (A119925), e: A120025 (A120026)
• Minkowski's question mark function, values obtained at: Khinchin's constant: A119928 (A119929), Levy's constant: A120028 (A120029)
• Minkowski's question mark function: see also Index entries for sequences related to Stern's sequences
• misleading plots: see deceptive plots

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Mo

• mobiles , sequences related to :
• mobiles : A032143, A032160, A032200*, A032202, A038037*
• mobiles : A106364
• mobiles, 2-colored: A032161, A032172, A032174, A032201, A032204, A032257, A032290, A032293, A052716, A108531, A108532
• mobiles, asymmetric: A032171*, A032172, A032174 A032256, A032257, A032259, A055363-A055371
• mobiles, by generators, A108526*, A108527-A108529
• mobiles, dyslexic: A032218, A032235, A032236, A032237, A032238, A032256, A032257, A032259, A032274, A032289*, A032290, A032292, A032293, A038038*
• mobiles, increasing: A029768*, A055356-A055362
• mobiles, leaves, A055340*, A055341-A055348, A055349*, A055350-A055371
• mobiles, series-reduced: A032163, A032174, A032188, A032203*, A032204, A032292, A032293
• Mobius: see Moebius
• mobius: see Moebius
• Mock theta numbers:: A000025, A000039, A000199
• mod(x,y): A051126*, A051127*
• models (in statistics), sequences related to :
• models (in statistics): A006126, A006602, A006896, A006897, A006898, A079263, A079265, A000112
• modest numbers: A054986*, A007627, A055018
• modular forms, modular function, etc. sequences related to :
• modular forms: A006352, A006353, A006354
• modular function g_2: A003296
• modular function G_2: A005760, A006352
• modular function g_3: A003297
• modular function G_3: A005761
• modular function g_4: A005757
• modular function G_4: A005762
• modular function g_5: A005758
• modular function g_6: A005759
• modular function G_6: A005764
• modular functions (1):: A006709, A002512, A002507, A002511, A002510, A002508, A005760, A005761, A006710, A002509, A005764, A003295, A005762
• modular functions (2):: A006707, A006708, A005758, A005757, A005759, A000706
• modular group, cusp forms for: see cusp forms
• modular groups: see groups, modular
• Moebius (or Mobius) function mu(n) , sequences related to :
• Moebius (or Mobius) function mu(n): A008683*, A007423, A002321, A002996
• Moebius function, infinitary: A064179
• Moebius function: the official symbol in the OEIS is mu (see A008683), not MoebiusMu nor mobius, etc., except in Maple, Mma, etc lines where it cannot be changed
• Moebius is the official spelling of this name in the OEIS (except in Maple, Mma, etc lines where it cannot be changed)
• Moebius transform: see Transforms file
• Moebius transforms:: (1) A007432, A007444, A007427, A007554, A003238, A007435, A007436, A007445, A007438, A007431, A007428, A007425
• Moebius transforms:: (2) A007551, A007434, A007426, A007429, A007437, A007430, A007433
• Molecular species:: A007649
• Molien series , sequences from :
• Molien series, harmonic: A008924
• Molien series, of 4-D groups (1): A005916 A008610 A008623 A008627 A008643 A008650 A008667 A008668 A008669 A008670 A008718 A013977
• Molien series, of 4-D groups (2): A013978 A028249 A028288 A030533 A068491 A078404 A078411
• Molien series: (1+x^10+x^20)/((1-x^6)*(1-x^15)): A008651
• Molien series: (1+x^15)/((1-x^2)*(1-x^6)*(1-x^10)): A008613
• Molien series: (1+x^15)/((1-x^2)*(1-x^6)*(1-x^15)): A005868
• Molien series: (1+x^21)/((1-x^4)*(1-x^6)*(1-x^14)): A008614
• Molien series: (1+x^3)/(1-x^2)^2: A028242
• Molien series: (1+x^4)/((1-x)*(1-x^3)^2*(1-x^5)): A028288
• Molien series: (1+x^6+x^9+x^15)/((1-x^4)*(1-x^12)): A008647
• Molien series: (1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12)): A008718
• Molien series: (1+x^9)/((1-x^4)*(1-x^6): A008647
• Molien series: -/1,2,3,4: A001400
• Molien series: -/1,2,4,6: A099770
• Molien series: -/1,2,4,8: A008643
• Molien series: -/1,2: A008619
• Molien series: -/1,3,4,6: A008670
• Molien series: -/1,3,5: A008672
• Molien series: -/1,3,7: A025768
• Molien series: -/1,3,9,27: A008650
• Molien series: -/1,3,9: A008649
• Molien series: -/1,3: A008620
• Molien series: -/1,4,16: A008652
• Molien series: -/1,4,6,7,9,10,12,15: A008582
• Molien series: -/1,4,8: A092352
• Molien series: -/1,4: A008621
• Molien series: -/1,5,25: A008648
• Molien series: -/1,5: A002266
• Molien series: -/1,6: A097992, A054895
• Molien series: -/12,18,24,30: A008667
• Molien series: -/2,12,20,30: A008668
• Molien series: -/2,12: A097992
• Molien series: -/2,2,11: A008723
• Molien series: -/2,3,5,6: A029143
• Molien series: -/2,3: A008615
• Molien series: -/2,5,6,8,9,12: A008584
• Molien series: -/2,6,10: A008672
• Molien series: -/2,6,8,10,12,14,18: A008593
• Molien series: -/2,6,8,12: A008670
• Molien series: -/2,8,12,14,18,20,24,30: A008582 (E_8)
• Molien series: -/2,8: A008621
• Molien series: -/4,12: A008620
• Molien series: -/4,6,10,12,18: A008666
• Molien series: -/4,6,7: A008622
• Molien series: -/4,6: A008615
• Molien series: -/4,8,12,20: A008669
• Molien series: -/6,12,18,24,30,42: A008581
• Molien series: -/8,24: A008620
• Molien series: 0+2+4/3,3: A008611
• Molien series: 0+20+40/12,30: A008651
• Molien series: 0+3+4+5/2,2,3,6: A051630
• Molien series: 0+6+9+15/4,12: A008647
• Molien series: 0+8+16/2,4,6: A028309
• Molien series: 1/((1-x)*(1-x^2)^2*(1-x^3)): A008763
• Molien series: 1/((1-x)*(1-x^3)): A008620
• Molien series: 1/((1-x)*(1-x^4)): A008621
• Molien series: 1/((1-x^2)*(1-x^3)*(1-x^5)*(1-x^6)): A029143
• Molien series: 1/((1-x^2)*(1-x^5)*(1-x^6)*(1-x^8)*(1-x^9)*(1-x^12)): A008584
• Molien series: 10/1,2,3,4,5: A008628
• Molien series: 10/1,2,3,5: A020702
• Molien series: 10/2,3,4,5: A090492
• Molien series: 12/2,6,8,12: A028249
• Molien series: 12/4,8,8: A004652
• Molien series: 12/6,8: A008612
• Molien series: 15/1,2,3,4,5,6: A008629
• Molien series: 15/2,6,10: A008613
• Molien series: 18/1,4,8,12: A092508
• Molien series: 18/2,8,12,24: A008718
• Molien series: 18/8,12,24: A090176
• Molien series: 18/8,12: A008647
• Molien series: 2/1,1,2,3: A014126
• Molien series: 2/1,1,3: A007980
• Molien series: 21/4,6,14: A008614
• Molien series: 3/1,2,2,4: A005232
• Molien series: 3/1,2,3: A007997
• Molien series: 3/1,2: A028310
• Molien series: 4/1,3,3,5: A028288
• Molien series: 4/2,2,3: A008796
• Molien series: 40/4,8,12,20: A020702
• Molien series: 45/6,12,30: A005868
• Molien series: 5/3,4: A091972
• Molien series: 6/1,2,3,4: A008627
• Molien series: 6/1,3,4: A036410
• Molien series: 6/2,3,4: A008742
• Molien series: 6/4,4: A028242
• Molien series: 6/4,8: A008624
• Molien series: 8/1,2,3,4: A008769
• Molien series: 8/1,4: A092533
• Molien series: 9/2,4,6: A008743
• Molien series: for Aut(Leech) or Con.0: A008925, A008924
• Molien series: for J2: A005813
• MOLS, see Latin squares, mutually orthogonal
• money: see sequences offering a monetary reward
• monoids , sequences related to :
• monoids : A058129*, A058133*, A058153*, A058154
• monoids, asymmetric: A058130*, A058134, A058135, A058136*, A058140, A058141, A058150-A058152
• monoids, by idempotents: A058137*, A058138-A058145, A058146*, A058147-A058152, A058157*, A058158-A058160
• monoids, commutative: A058131*, A058134, A058142, A058143, A058150, A058155*, A058156, A058159, A058160
• monoids, free: A005345
• monoids, Girard: A034786
• monoids, idempotent: A005345, A058112*
• monoids, number of multiplications needed for: A075099
• monoids, ordered: A030453
• monoids, self-converse: A058132*, A058135, A058144-A058146, A058151
• Monster , sequences related to :
• Monster simple group, McKay-Thompson series for: see McKay-Thompson series
• Monster simple group: A003131*, A001379*, A002267, A051161
• months: of year: A008685*, A031139
• Montreal solitaire:: A007048, A007075, A007049, A007050, A007046, A007076
• Moon (1987), "Some enumerative results on series-parallel networks", sequences mentioned in :
• Moon (1987), "Some enumerative results on series-parallel networks": (1) A000311 A000669 A006351 A058379 A058380 A058381 A058385 A058386 A058387 A058388 A058406 A058475
• Moon (1987), "Some enumerative results on series-parallel networks": (2) A058476 A058477 A058478 A058479 A058480 A058488 A058494 A058495
• Moran numbers: A001101*
• more terms needed!, see sequences that need extending
• more terms needed!, see also huge web page with full list of sequences that need extending
• morphisms, fixed points of, see: fixed points of mappings
• mosaic numbers: A000026*
• Moser-de Bruijn sequence: sums of distinct powers of 4: A000695*
• most significant bit (msb): A053644, A000523
• motifs: A007017*
• Motzkin numbers, sequences related to :
• Motzkin numbers: A001006*
• Motzkin triangle: A026300*, A020474, A064189
• mousetrap game, sequences related to :
• mousetrap game: A002467 A002468 A002469 A007709 A007710 A018931 A018932 A018933 A018934 A028305 A028306
• Mozart: A064172 A027884 A027885
• Mrs Perkins's quilt: A005670, A005842, A089046, A089047
• msb = most significant bit: A053644, A000523

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Mu

• Mu Torere: A005655
• mu(n): A008683*
• mu(n): see Moebius function
• MU-numbers: A007335
• mult: keyword meaning multiplicative, that is, a(m*n) = a(m)*a(n) whenever g.c.d.(m,n) = 1
• multifactorial numbers: A000142, A006882, A007661, A007662, A085157, A085158, A114799, A114800, A114800, A114806.
• multigraphs, sequences related to :
• multigraphs: (1) A000421 A001374 A001399 A002620 A003082 A004102 A004104 A004105 A005965 A005966 A007717 A014395
• multigraphs: (2) A014396 A014397 A014398 A020554 A020555 A020556 A020557 A020558 A020559 A020560 A020561 A020562
• multigraphs: (3) A020563 A020564 A020565 A050531 A050532 A050535 A050927 A050929 A050930 A052107 A052108 A052111
• multigraphs: (4) A052112 A052113 A052114 A052151 A052152 A052170 A052171 A053400 A053420 A053421 A053465 A053466
• multigraphs: (5) A053467 A053468 A053513 A053514 A053515 A053516 A053517 A053588 A063841* A063842 A063843
• Multinomial coefficients:: A005651
• Multiplication-cost:: A005766
• Multiplicative encodings:: A007280, A007188, A007190, A007189, A007338
• multiplicative means that a(m*n) = a(m)*a(n) whenever g.c.d.(m,n) = 1
• multiplicative order , sequences related to :
• multiplicative order of 2 mod n, ord(2,n): A002326
• multiplicative order of m mod n, ord(m, n) where GCD(n,m)=1: A002326, A053446, A053447, A053448, A053449, A053450, A053451, A053452, A053453, A054711
• multiplicative order of m mod n, ord(m,n), sequences related to: (1) A037226 A046932 A053006 A053453
• multiplicative order of m mod n, ord(m,n), sequences related to: (2) A057764 A059499 A059885 A059886 A059887 A059888 A059889 A059890 A059891 A059892 A059907 A059908
• multiplicative order of m mod n, ord(m,n), sequences related to: (3) A059909 A059910 A059911
• multiplicative, completely , sequences related to :
• multiplicative, completely (00): means that a(m*n) = a(m)*a(n) for all m and n >= 1
• multiplicative, completely (01): A000004 A000007 A000012 A000027 A000035 A000265 A000290 A000578 A000583 A000584 A001014 A001015 A001016 A001017 A001477 A003958 A003959 A003960
• multiplicative, completely (02): A003961 A003962 A003963 A003964 A003965 A006519 A008454 A008455 A008456 A008836 A010801 A010802 A010803 A010804 A010805 A010806 A010807 A010808
• multiplicative, completely (03): A010809 A010810 A010811 A010812 A010813 A011582 A011583 A011584 A011585 A011586 A011587 A011588 A011589 A011590 A011591 A011558 A011592 A011593
• multiplicative, completely (04): A011594 A011595 A011596 A011597 A011598 A011599 A011600 A011601 A011602 A011603 A011604 A011605 A011606 A011607 A011608 A011609 A011610 A011611
• multiplicative, completely (05): A011612 A011613 A011614 A011615 A011616 A011617 A011618 A011619 A011620 A011621 A011622 A011623 A011624 A011625 A011626 A011627 A011628 A011629
• multiplicative, completely (06): A011630 A011631 A028310 A034947 A036987 A038500 A038502 A055975 A057427 A060904 A061109 A061142 A061898 A063524 A064553 A064558 A064614 A064988
• multiplicative, completely (07): A064989 A065330 A065331 A065332 A065333 A065338 A065371 A065372 A066260 A066261 A071785 A071786 A072010 A072012 A072026 A072027 A072028 A072029
• multiplicative, completely (08): A072084 A072085 A072087 A072436 A072438 A072963 A079065 A079579 A079707 A080891 A086299 A089081 A091684 A091685 A091703 A093709 A098108 A101455
• multiplicative, completely (09): A102440 A102441 A108548 A108951 A112347 A113175 A120119 A122261 A123667 A122968-A122971
• multiplicative, strongly: see multiplicative, completely
• multiplicative, totally: see multiplicative, completely
• multiplicatively perfect numbers: A007422*
• multiply-perfect numbers: A007539*, A007691*
• music, sequences related to :
• music: Beethoven: A001491, A054245, A123456
• music: Mozart: A064172 A027884 A027885
• music: Norgard, Per: A004718* A005811 A073334 A083866 A135564 A135567 A135689 A135690 A135692 A136004
• music: scales: A071831/A071832, A071833
• mutinous numbers: A027854
• mutually orthogonal Latins squares, see Latin squares, mutually orthogonal
• M\"{o}bius: see Moebius function
• M\'{e}nage: see permutations, menage and polynomials, menage

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_N

• n -> 3n - sigma(n), sequences related to :
• n -> 3n - sigma(n): A033885, A033945, A033946, A037159, A037160, A058541, A058542, A058545
• n appears n times: A002024*, A003056, A001462, A007401, A004797
• n divides concatenation of all numbers up through n , sequences related to :
• n divides concatenation of all numbers up through n: (01) A029471 A029472 A029473 A029474 A029475 A029476 A029477 A029478 A029479 A029480 A029481 A029482
• n divides concatenation of all numbers up through n: (02) A029483 A029484 A029485 A029486 A029487 A029489 A029490 A029491 A029492 A029493 A029494 A029495
• n divides concatenation of all numbers up through n: (03) A029496 A029497 A029498 A029499 A029500 A029501 A029502 A029503 A029504 A029505 A029506 A029507
• n divides concatenation of all numbers up through n: (04) A029508 A029509 A029510 A029511 A029513 A029514 A029515 A029516 A029517 A029518 A029519 A029520
• n divides concatenation of all numbers up through n: (05) A029521 A029522 A029523 A029524 A029525 A029526 A029527 A029528 A029529 A029530 A029531 A029532
• n divides concatenation of all numbers up through n: (06) A029533 A029534 A029535 A029536 A029537 A029538 A029539 A029540 A029541 A029542 A061931 A061932
• n divides concatenation of all numbers up through n: (07) A061933 A061934 A061935 A061936 A061937 A061938 A061939 A061940 A061941 A061942 A061943 A061944
• n divides concatenation of all numbers up through n: (08) A061945 A061946 A061947 A061948 A061949 A061950 A061951 A061952 A061953 A061954 A061955 A061956
• n divides concatenation of all numbers up through n: (09) A061957 A061958 A061959 A061960 A061961 A061962 A061963 A061964 A061965 A061966 A061967 A061968
• n divides concatenation of all numbers up through n: (10) A061969 A061970 A061971 A061972 A061973 A061974 A061975 A061976 A061977 A061978
• n divides sum of digits of k^n: A175169, A067862, A067864, A067863
• n reversed, R(n): A004086
• n!!, see factorial numbers, double
• n!+1: A038507*, A002583, A051301, A056111
• n!-1 is prime: see factorial primes
• n!-1: A033312*, A002582, A054415, A056110
• n!/2: A001710
• n!: A000142*
• n# (1st definition of primorial numbers: product of primes <= n): A034386*, A002110
• N-free graphs: A007596*
• n-phi-torial: A001783*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Na

• Narayana , sequences related to :
• Narayana triangle (also called Catalan triangle): A001263*
• Narayana-Zidek-Capell numbers: A002083*
• narcissistic numbers, sequences related to :
• narcissistic numbers: A005188*
• natural numbers, sequences related to :
• natural numbers, A000027*
• natural numbers, in bases -2 through -10: A039724, A073785, A007608, A073786, A073787, A073788, A073789, A073790, A039723
• natural numbers, in bases 1 through 10: A000042, A007088, A007089, A007090, A007091, A007092, A007093, A007094, A007095, A000027
• natural numbers, rearrangement of (2): A075086, A075087, A075375, A075378, A075380, A075383, A075562, A075563, A075564, A075566, A075567
• natural numbers, rearrangement of (3): A075616, A075617, A075618, A076053, A076099, A076123, A077220, A078840, A082748, A083164, A083180
• natural numbers, rearrangement of (4): A083762, A084035, A084337, A084393, A084398, A085100, A085875, A086496, A086512, A086537, A087559
• natural numbers, rearrangement of (5): A089560, A089562, A089564, A089566, A089568, A089570, A089572, A089710, A094339, A095167, A096113
• natural numbers, rearrangement of (6): A103849, A103877, A109890, A110354, A111679, A128280, A130108, A130109, A130110, A130111
• natural numbers, rearrangement of (conjectured or otherwise)(1): A065263, A073666, A073672, A073673, A073675, A073678, A073842, A075085
• natural numbers, see also: A007432, A003137, A007376, A007062, A007431, A003607, A007429, A007466, A007550, A007430

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Ne

• near-rings, sequences related to :
• near-rings: A037221*
• necklaces , sequences related to :
• necklaces , A000031*, A000358, A007997, A008610, A008646, A008965, A032191-A032197
• necklaces, 2 colors, no turning over, primitive: A001037*
• necklaces, 2 colors, no turning over: A000031*, A066318*
• necklaces, 2 colors, turning over allowed, primitive: A001371*
• necklaces, 2 colors, turning over allowed: A000029*
• necklaces, 3-colored, A001867*, A032179*
• necklaces, 3-colored, A106365
• necklaces, 4-colored, A001868*
• necklaces, 4-colored, A106366
• necklaces, 5-colored, A001869*
• necklaces, 5-colored, A106367
• necklaces, 6-colored, A106368
• necklaces, aperiodic: see Lyndon words
• necklaces, array of, A075195
• necklaces, asymmetric: see Lyndon words
• necklaces, balanced, A000108, A003239*, A007147, A045629
• necklaces, charged, A042943, A045611, A045612
• necklaces, complements are equivalent, A000013*, A045629, A058813
• necklaces, multicolored, A054625-A054629
• necklaces, permutations, A003322
• necklaces, triangle of, A047996*, A052311, A052312, A052313, A054630, A054631
• necklaces, triangle, A047996*, A052311, A052312, A052313
• necklaces: see also (1): A000016, A000046, A002075, A002076, A002729, A005594, A007977, A027882, A032180-A032184, A032189
• negative numbers: A001478*
• Negative pseudo-squares:: A001984
• neofields: A006609*
• nets, sequences related to :
• nets: A005929, A002880, A004106, A004103*, A005928, A004105, A004107
• networks, sequences related to :
• networks:: A001677, A006246, A001573, A006351, A006245, A001574, A001572, A006248, A006349, A006350, A001575
• next prime , sequences related to :
• next prime after terms of various sequences: see under previous prime
• next prime, A007918
• next prime: version 1: A007918, version 2: A151800
• nexus numbers , sequences related to :
• nexus numbers (1): A047969 A022521 A022522 A022523 A022524 A022525 A022526 A022527 A022528 A022529 A022530 A022531 A022532
• nexus numbers (2): A022533 A022534 A022535 A022536 A022537 A022538 A022539 A022540 A079547

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Ni

• Niemeier lattices, sequences related to :
• Niemeier lattices, theta series of (cf. SPLAG p. 407) (1): A008688 A047803 A008411 A008689 A008690 A008691 A047804 A008692 A008693 A008694 A008695 A047805 A047806 A008696
• Niemeier lattices, theta series of (cf. SPLAG p. 407) (2): A008697 A008698 A008699 A047807 A008700 A008701 A008702 A008703 A008704 A008408
• nilpotent numbers: A056867, A056868
• Nim-multiplication , sequences related to :
• Nim-multiplication in Maple: see A051775*, A051776*
• Nim-multiplication table: A051775*, A051776*, A051910*, A051911*
• Nim-multiplication, inverses: A051917
• Nim-multiplication, squares: A006042
• Nim-multiplication: see also (1) A004468 A004469 A004470 A004471 A004472 A004473 A004474 A004475 A004476 A004477 A004478 A004479
• Nim-products: see Nim-multiplication
• Nim-sums , sequences related to :
• Nim-sums in Maple: see A003987*, A051933*
• Nim-sums table: A003987*, A051933*
• Nim-sums: see also (1) A004442 A004443 A004444 A004445 A004446 A004447 A004448 A004449 A004450 A004451 A004452 A004453
• Nim-sums: see also (2) A004454 A004455 A004456 A004457 A004458 A004459 A004460 A004461 A004462 A004463 A004464 A004465
• Nim-sums: see also (3) A004514 A004515 A004516 A004517 A004518 A004519 A004520 A004521 A004522 A038712 A038713 A054517
• Nim:: A006015, A003413, A003412, A006042, A006017, A001581
• nineish numbers (decimal expansion contains a 9): A011539
• Niven numbers: A005349*
• Niven's constant: A033151*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_No

• no-three-in-line problem: A000769*
• no-three-in-line problem: see also A000755, A037185, A037186, A037187, A037188, A037189, A107355, A007402, A000938
• Noergaard, Per: see Norgard, Per
• nome: see Index entries for sequences related to the Jacobi nome
• non-collinear points in cube: A003142
• Non-Hamiltonian:: A007030, A007031, A007032, A007033
• non-mathematical sequences , sequences related to :
• non-mathematical sequences (00): a tentative list courtesy of Franklin T. Adams-Watters
• non-mathematical sequences (01): A000053, A000054, A001049, A001356, A001491, A002651, A003671-A003673,
• non-mathematical sequences (02): A003675-A003678, A003786, A005600, A005601, A006833, A006834, A007656,
• non-mathematical sequences (03): A007826, A008684-A008686, A008744-A008746, A009734, A011554, A011763,
• non-mathematical sequences (04): A011765, A011766, A011770, A011771, A027440, A027884, A027885, A029925,
• non-mathematical sequences (05): A029915-A029928, A031139, A033171-A033174, A038674, A051121, A053401,
• non-mathematical sequences (06): A053402, A053406, A054245, A055069, A056958, A056997-A056999,
• non-mathematical sequences (07): A057347-A057350, A057430, A057720, A058317, A058318, A060512, A060513,
• non-mathematical sequences (08): A060958, A061251, A063516, A064172, A064265-A064267, A064296,
• non-mathematical sequences (09): A070058-A070060, A070062-A070064, A070273, A072171, A072550, A072915,
• non-mathematical sequences (10): A073304, A073305, A078300-A078302, A080915, A080916, A081098-A081101,
• non-mathematical sequences (11): A081244, A081245, A081799-A081803, A081813-A081826, A084427, A084989,
• non-mathematical sequences (12): A085735, A087778, A090232, A090651, A091786, A091978, A093907, A097105,
• non-mathematical sequences (13): A098476, A100000, A100017, A100487, A100488, A101111, A101284-A101287,
• non-mathematical sequences (14): A101312, A101358, A101647-A101649, A101944, A104019, A104034, A104101,
• non-mathematical sequences (15): A106605, A106806, A107273-A107276, A109553, A109618, A109952, A111167,
• non-mathematical sequences (16): A113529, A114062, A115100, A115417, A116369, A116386, A116448, A117635,
• non-mathematical sequences (17): A118652, A118661, A118662, A119406, A120441, A121818, A122559, A123456
• Non-separable:: A006402, A002218, A006411, A006412, A006415, A006413, A006414, A006441
• nonagon is spelled 9-gon in the OEIS
• nonagonal is spelled 9-gonal in the OEIS
• noncubes: A007412*
• nonnegative integers: A001477*
• nonpositive integers: A001489*
• nonprimes: A018252* (nonprimes), A002808* (composites), A014076* (odd composites)
• nonrepetitive sequences: A003270, A003324
• nonsquares: A000037*
• nontotients: A007617*, A005277
• Norgard, Per, sequences related to :
• Norgard, Per: A004718
• Norgard, Per: see also A005811 A073334 A083866 A135564 A135567 A135689 A135690 A135692 A136004
• Norwegian: A014656, A028292, A092407
• Norwegian: see also Index entries for sequences related to number of letters in n
• not a product of earlier terms, see: smallest number not a product of earlier terms
• not always integral: A003504, A005166, A005167
• notation in OEIS: see spelling and notation
• noughts and crosses: see tic-tac-toe
• NSW numbers: A002315*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Nu

• number of positive integers <= 10^n that are divisible by no prime exceeding p: A066343 A100752 A106598 A106600 A107352 A108274 A108275 A108276 A108277
• number of primes <= x: A000720*
• number of syllables to represent n: A002810, A045736
• number of ways the set (1^k, 2^k, ..., n^k) can be partitioned into two sets of equal sums: k=1 A058377, k=2 A083527, k=3 A113263, k=4 A111253
• number of words to represent n: A001167
• number theory, unsolved problems in: see unsolved problems in number theory (selected)
• numbers congruent to ... mod n: see "congruent to ..."
• numbers n such that 2^k + n is prime for all k (empty: see A076336)
• numbers n such that n*2^k + 1 is composite for all k: A076336
• numbers n such that n*2^k + 1 is prime for all k (empty: see A076336)
• numbers n written in bases 1, 2, 3, 4, ...: A000042, A007088, A007089, A007090, ...
• numbers of form k_1 k_2 .. k_n (1/k_1 + .. + 1/k_n), k_i >= 1: A025052, A027563, A027564, A027565, A027566, A055745
• numbers that contain a 0: A011540
• numbers that contain a 1: A011531
• numbers that contain a 2: A011532
• numbers that contain a 3: A011533
• numbers that contain a 4: A011534
• numbers that contain a 5: A011535
• numbers that contain a 6: A011536
• numbers that contain a 7: A011537
• numbers that contain a 9: A011539
• numbers that contain an 8: A011538
• numbers, automorphic: see automorphic numbers
• numbers, Bernoulli: see Bernoulli numbers
• numbers, Euler: see Euler numbers
• numbers, Eulerian: see Euler numbers
• numbers, feral: see wild numbers
• numbers, Gaussian, see Gaussian integers
• numbers, octal: see octal numbers
• numbers, perfect: A000396*, A002827* (unitary), A007539 (n-fold)
• numbers, tri-perfect: A005820
• numbers, triperfect: A005820
• numbers, triply perfect: A005820
• numbers, wild: see wild numbers
• numeri idonei: see Index entries for sequences related to Euler's idoneal numbers
• numerus idoneus: see Index entries for sequences related to Euler's idoneal numbers
• Nynorsk: A028292
• Nynorsk: see also Index entries for sequences related to number of letters in n
• n^(n+1): A007778
• n^(n-1): A000169*
• n^(n-2): A000272*
• n^(n-3): A007830
• n^2 == n mod K, sequences related to :
• n^2 == n mod K: K=1 or 2: A001477, K=3: A032766, K=4: A042948, K=5: A008851, K=6: A032766, K=7: A047274, K=8: A047393, K=9: A090570, K=10: A008851, K=11: A112651, K=12: A112652, K=13: A112653, K=14: A047274, K=15: A151972, K=16: A151977, K=17: A151978, K=19: A151979, K=20: A151980, K=24: A151973, K=30: A151975, K=32: A151983, K=48: A151981, K=64: A151984
• n^2-n+41 is prime: A002837
• n^n: A000312*, A014566
• n^n^...^n, number of distinct values taken by: A002845, A003018, A003019
• n_3 configurations: see configurations (combinatorial or geometrical)
• n_n: A122618

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_O

• O'Nan group: A003919, A008625
• obtaining numbers from other numbers and the operations of addition, subtraction, etc: see under four 4's problem
• octagonal numbers: A000567*
• octahedral numbers: A005900*
• octahedron, truncated: see truncated octahedron
• octahedron: A005899
• octal numbers, sequences related to :
• octal numbers, not: A057104
• octal numbers: A007094
• octupi: A029767*
• odd numbers , sequences related to :
• odd numbers n such that 2^k + n is composite for all k: see A076336
• odd numbers, fake: A080591
• odd numbers: A005408*
• odd numbers: see also A000700, A000069, A007697, A006046, A007455, A007482, A000593, A007483, A006945, A001033, A002309, A006285, A002594, A006038
• odd unimodular lattices, see: lattices, unimodular
• odious numbers: A000069*
• omega(n), number of distinct primes dividing n: A001221
• Omega(n), total number of primes dividing n: A001222
• one local maximum, arrays with: A007846, A000079, A087518, A087783*, A087923-A087932
• one odd, two even, etc.: A001614
• one puddle: see one local maximum
• ones-counting sequence: A000120
• open problems: try searching in the OEIS for the following words: conjecture, apparently, appears, seems, probably, etc.
• operational recurrences: A001577*
• Opmanis's nice base-dependent sequence: A177834
• optimal rulers: see perfect rulers
• OR(x,y): A003986*
• OR: A007460, A006583
• orchard problem: A003035*, A006065, A008997
• order or orders, sequences related to :
• order, binary: A029837
• order, multiplicative order of 2 mod n: A002326
• order, ord(x,y): the multiplicative order of x mod y, see entries under: multiplicative order
• ordered factorizations: A074206*, A002033
• orders, total: see total orders
• orders, weak: A000790
• orders: A000670, A004123, A004122, A004121
• ordinals: A005348
• Ore numbers: A001599*, A001600
• orthogonal arrays, sequences related to :
• orthogonal arrays, number of: A039931*, A039927*, A048885*
• orthogonal arrays, see also: A008286, A039930, A048164, A048638, A048893, A049082, A049083
• orthogonal groups: A003053*, A001051
• out-points: A003025, A003026
• overpartitions: A015128

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Pac

• p-adic square roots in PARI: A051276, A051277
• p-adic valuations: A001511, A007949, A051064, A055457
• packing squares: A005842
• Packings:: A001224, A005842, A003012, A004021
• Pair-coverings:: A006185, A006186, A006187
• pairs of relatively prime numbers, sequences related to :
• pairs of relatively prime numbers: A018805*, A100449
• pancake numbers: A000124*
• paper-folding sequences: see folding a piece of paper

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Par

• paradoxical sequences, sequences related to :
• paradoxical sequences: A053169*, A091967, A031135, A037181
• parasitic numbers: see transposable numbers
• parentheses, ways to arrange , sequences related to :
• this includes towers of exponents such as 2^2^...^2 (which is A002845)
• parentheses, ways to arrange: (1) A000081* A000108* A001003* A001190* A001699* A047929 A054026 A057546 A061855 A071153 A075729 A078623
• parentheses, ways to arrange: (2) A079216 A079217 A000311 A001147 A002845 A003006 A003007 A003008 A003018 A003019 A145545 A145546 A145547 A145548 A145549 A145550 A198683 A049006 A077589 A077590
• parenthesized in 2 ways: A006895
• PARI , sequences related to :
• PARI code for printing a square array or table by antidiagonals: A025581*, A002262*, A004736*, A002260*, A004070*
• PARI code for printing a triangle by rows: A003056*, A002024*, A003057*, A055086*, A073188*, A000194*
• PARI code for sequences obtained by concatenating strings: A005713*
• PARI code for sequences obtained by repeated substitutions: A005614*
• PARI code for set of digits of n in base k: A000695*
• parity sequence: A010060
• partially ordered sets: see posets
• partition functions for lattices, sequences related to :
• partition functions for lattices: A002890, A002891, A001393, A002892, A001407, A001406
• partitions , sequences related to :
• partitions, A000041*
• Partitions, A002300, A007209, A002099, A001144, A002098, A000065, A002622, A002040, A007312, A002039, A002164, A006628
• partitions, average number of parts: see A006128
• partitions, binary: A000123*, A018819
• partitions, bipartite: see "partitions, into pairs"
• partitions, graphical: A000569*, A004250*, A004251*, A029889*, A007721* (connected graphs)
• partitions, graphical: see also A007722, A029890, A029891, A029892, A029893, A029894, A029895
• partitions, into distinct parts: "partitions of n into distinct parts >= k" and "partitions of n into distinct parts, the least being k-1" come in pairs of closeley related sequences: A025147, A096765 (k=2); A025148, A096749 (k=3); A025149, A026824 (k=4); A025150, A026825 (k=5); A025151, A026826 (k=6); A025152, A026827 (k=7); A025153, A026828 (k=8); A025154, A026829 (k=9); A025155, A026830 (k=10); A096740, A026831 (k=11)
• partitions, into distinct parts: A000009*, A000700 (distinct odd parts)
• partitions, into distinct primes: A000586*
• partitions, into even number of parts: A027187
• Partitions, into non-integral powers, A000135, A000148, A000158, A000160, A000234, A000263, A000298, A000327, A000333, A000339, A000345, A000347, A000397
• partitions, into odd number of parts: A027193
• partitions, into odd parts: A000009
• Partitions, into pairs, A054225, A054242, A006199, A006198, A006200, A090806
• partitions, into parts 5k+-1: A003114*
• partitions, into parts 5k+-2: A003106*
• Partitions, into parts of m kinds, A000070, A000097, A000098, A000710, A000712, A000713, A000714, A000715, A000711, A000716
• Partitions, into powers, A003108, A005706, A005705, A005704, A002572
• Partitions, into prime parts, A000586, A007359, A002100, A007360, A000607*, A002095, A000726
• partitions, into primes: A000607*, A000586 (distinct primes)
• partitions, into relatively prime parts: A051424*
• partitions, into triangular numbers: A007294
• partitions, m-ary: A000123, A018819, A005704, A005705, A005706
• Partitions, maximal, A002569
• Partitions, mixed, A002096
• Partitions, multi-dimensional, A000334, A000390, A000416, A000427, A002721
• Partitions, multi-line, A003292, A000990, A000991, A002799, A001452
• partitions, non-squashing: A000123, A018819, A088567, A088575, A088585, A089300, A089292
• partitions, notes on (01): When considering partitions of n (initially labeled) objects, we may:
• partitions, notes on (02): (1) Allow the "blocks" to be empty - so more generally refer to "pieces"
• partitions, notes on (03): (2) Order the pieces - so consider "sequences" of pieces instead of "collections"
• partitions, notes on (04): (3) Order the elements within the pieces - so consider "lists" instead of "sets"
• partitions, notes on (05): (4) Erase the labels on the objects - this produces partitions or compositions of integers
• partitions, notes on (06): With these considerations in mind, we define 6 rows of a table. The columns are defined by formulating various conditions on how many objects can be in the pieces. The six rows are:
• partitions, notes on (07): Row A: Sequences of lists of labeled elements (e.g. books on shelves)
• partitions, notes on (08): Row B: Sequences of sets of labeled elements (i.e. ordered partitions)
• partitions, notes on (08): Row C: Sequences of multisets on one color of marble (i.e. compositions)
• partitions, notes on (09): Row D: Collections of lists of labeled elements (e.g. stacks of books)
• partitions, notes on (10): Row E: Collections of sets of labeled elements (i.e. set partitions)
• partitions, notes on (11): Row F: Collections of multisets on one color of marble (i.e. integer partitions)
• partitions, notes on (12): In the columns, m is the number of marbles and b is the number of bins
• partitions, notes on (13): Column 1: m elements. Each block has at least 1 element (and number of blocks varies)
• partitions, notes on (14): Column 2: m elements. Each block has at least 2 elements (and number of blocks varies)
• partitions, notes on (15): Column 3: m elements. Each block has 1 or 2 elements (and number of blocks varies)
• partitions, notes on (16): Column 4: b blocks. Each block has exactly 2 elements (and there are 2b elements)
• partitions, notes on (17): Column 5: b pieces. Each piece has 0 or 1 elements (and number of elements varies)
• partitions, notes on (18): Column 6: b pieces. Each piece has 0, 1, or 2 elements (and number of elements varies)
• partitions, notes on (19): Column 7: b blocks. Each block has 1 or 2 elements (and number of elements varies)
• partitions, notes on (20): OEIS # Col 1 Col 2 Col 3 Col 4 Col 4 Col 6 Col 7
• partitions, notes on (21): Row A A002866 A052554 A005442 A010050 A000522 A082765 A099022
• partitions, notes on (22): Row B A000670 A032032 A080599 A000680 A000522 A003011 A105749
• partitions, notes on (23): Row C A011782 A000045 A000045 A000012 A000079 A000244 A000079
• partitions, notes on (24): Row D A000262 A052845 A047974 A001813 A000027 A105747 A001517
• partitions, notes on (25): Row E A000110 A000296 A000085 A001147 A000027 A105748 A001515
• partitions, notes on (26): Row F A000041 A002865 A008619 A000012 A000027 A000217 A000027
• partitions, notes on (27): Reference: R. A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions! arXiv math.CO.0606404
• partitions, number of parts in all: A006128
• partitions, numbers n such that P(k*n) is prime, where P(n) is the number of partitions of n: A046063, A114165, A111389, A111045, A114166, A111036, A114167, A114168, A114169, A114170, A113499, A115214
• partitions, odd: A000009
• partitions, of a polygon: A002058, A002059, A002060
• partitions, of n into 4 squares: A002635*
• partitions, of n into 4th powers: A046042*
• partitions, of 5n: see separate page Partitions of 5n
• Partitions, of points on a circle, A001005
• Partitions, of unity, A002966, A006585
• Partitions, order-consecutive, A007052
• partitions, partition numbers, prime: A046063, A114165, A111389, A111045, A114166, A111036, A114167, A114168, A114169, A114170, A114171
• partitions, perfect: A002033
• partitions, planar: A000219*, A001522, A001523, A001524, A089300, A089299, A089292
• Partitions, planar:: A000784, A005987, A000786, A003293, A000785, A005986, A005157, A006366, A002659, A002660, A002791, A002800
• partitions, protruded: A005403, A005404, A005405, A005406, A005407, A005116
• Partitions, refinements of, A002846
• partitions, restricted (1):: A002637, A002635, A002471, A002636, A007690, A001156, A007294, A003105, A003106, A003114
• partitions, restricted (2):: A002865, A001399, A006950, A001972, A007279, A001971, A001400, A001401, A001402, A002573
• partitions, restricted (3):: A002574, A002843, A005895, A006827, A007511, A005896, A001976, A001975, A002219, A001978
• partitions, restricted (4):: A006477, A001977, A001980, A001979, A002220, A001982, A001981, A002221, A002222
• Partitions, rotatable, A002722, A002723
• partitions, solid (1): A000293* A000294 A002835 A002836 A005980 A037452 A080207 A002043 A002936 A002974 A002044 A002045
• partitions, solid (2): A082535
• partitions, square: A008763, A089299
• partitions, total number of parts: A006128
• partitions, total: A000311* (labeled), A000669* (labeled)
• partitions, triangle of number of partitions of n in which greatest part is k: A008284*
• partitions, triangle of number of partitions of n into k parts: A008284*
• partitions, wide: A070830

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Pas

• Pascal triangle , triangles related to :
• Pascal triangle, triangles and arrays related to: A007318* (main entry), A008949, A034851, A047999, A050186, A052509, A052511, A052553, A054123, A054124
• Pascal triangle, triangles and arrays related to: (cont.) A055372-A055376, A055883, A055894
• Pascal triangle: A006047, A007188, A006921, A006046, A001317, A006048, A006943, A006940
• Pascal's rhombus: A059317*, A059318-A059320, A006190
• Pascal's square: A059674
• Paths in plane:: A006858, A006859
• paths in square grid: A000984
• Paths through arrays:: A006675, A006676
• patience: A051921
• Patterns:: A002619, A002618, A007574
• pay-phones , triangles related to :
• pay-phones: A095236*, A095237, A095239, A095240, A095698, A095912, A095923

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Pea

• Peaks:: A000487
• Peanuts cartoon sequences: A006345, A006346
• pebble problem: A201144, A183110, A054531
• pedal triangles: A102536
• peeling rinds: A005675
• Pell numbers: A000129*
• Pell numbers: see also A002349, A006704, A006702, A002203, A006705, A006703, A001932, A003153, A001571, A001582, A002350, A001570
• Pell's equation: see Pellian equation
• Pellian equation , sequences related to :
• Pellian equation x^2 - D*y^2 = 1: smallest solution (x,y) as D runs through primes: (A081233, A081234), (A081231, A082394), (A081232, A082393)
• Pellian equation x^2 - D*y^2 = 1: smallest solution (x,y): (A002450, A002349)
• Pellian equation: John Robertson's web page on solving Pell's equation
• Pellian equation:: A006704, A006702, A006705, A006703, A003153, A001571, A001570
• pennies:: A005575, A005577, A005576, A001524, A072065

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Per

• percolation series , sequences related to :
• percolation series (1):: A006462, A006731, A006808, A006727, A006461, A006836, A006732, A006734, A006728, A006730
• percolation series (2):: A006462, A006731, A006808, A006727, A006461, A006836, A006732, A006734, A006728, A006730
• percolation series (3):: A006742, A006738, A006733, A006729, A006837, A006803, A006807, A006804, A006739, A006835
• percolation series (4):: A006813, A006809, A006735, A006810, A006838, A006805, A006811, A006740, A006736, A006806, A006812, A006741, A006737
• perfect lattices: see lattices, perfect
• Perfect matchings, A005271
• perfect numbers: A000396*, A002827* (unitary), A007539 (n-fold)
• perfect partitions: A002033*
• perfect powers: A001597*, A007916, A023055, A023057
• perfect rulers , sequences related to :
• perfect rulers: A004137, A104305-A104310, A103294-A103301
• perfect years: A061013
• Perfect:: A002033, A004026, A002839, A007346, A007422, A007357, A005820
• period of continued fraction for sqrt(n) , sequences related to :
• period of continued fraction for sqrt(n), length of: A003285*, A097853
• period of continued fraction for sqrt(n), see: sqrt(n), length of period of continued fraction for
• period of reciprocal of n: see 1/n
• period of reciprocal of nth prime: see 1/p
• Periodic differences:: A002081
• Periodic sequences:: A000035, A000034
• periodic table: A007656*, A058317, A058318
• Periods:: A003285, A006447, A006883, A002329
• Permanents:: A003113, A000794, A005326, A003112, A000804, A000805
• permutation groups: see groups, permutation
• permutations , sequences related to :
• Permutations, alternating: A000111*, A007289, A007286, A005981, A006873, A005982, A005983
• permutations, asymmetric: A000899
• Permutations, Baxter, A001183, A001181, A001185
• permutations, bitriangular: A006230
• Permutations, by cycles, A005225, A005772
• Permutations, by descents, A002538, A002539
• permutations, by distance: A002524, A002525, A002526, A002527, A002528, A002529, A000045, A072856, A154654, A154655, A154656, A154657, A154658, A154659
• Permutations, by inversions, A001892, A000707, A001893, A001894, A005287, A005283, A005284, A005285
• Permutations, by length of runs, A001251, A001252, A001253, A000303, A000402, A000434, A000456, A000467, A000517
• Permutations, by number of peaks, A000487
• Permutations, by number of runs, A000352, A000363, A000486, A000506, A000507
• Permutations, by number of sequences, A001759, A001760
• permutations, by numbers of consecutive ascending and descending pairs, triangles of: A001100, A086856, A010028
• permutations, by numbers of consecutive ascending and descending pairs: A002464, A086852, A086853, A086854, A086855, A001266, A000130, A000349, A001267, A001268
• Permutations, by order, A001472, A005388, A001471, A001470, A001189, A001473
• Permutations, by rises, A000130, A000239, A001277, A000274, A000544, A001279, A000313, A000349, A001260, A001261, A001266, A001267, A001278, A001268, A001280, A001282
• Permutations, by spread, A004206, A004205, A004204
• Permutations, by subsequences, A002628, A005802, A002629, A002630, A003316, A001454, A001455, A001456, A001457, A001458
• permutations, connected: A003319
• Permutations, cycles in, A006694
• Permutations, descending subsequences of, A006219, A006220
• Permutations, discordant, A002634, A000183, A002633, A000270, A000380, A000388, A000561, A000440, A000562, A000470, A000563, A000476, A000492, A000564, A000500, A000565
• permutations, even: A001710*, A003221, A000704
• permutations, graceful: A006967
• permutations, indecomposable: A003319
• Permutations, inequivalent, A003510
• Permutations, inversions in, A000140
• Permutations, isolated reformed, A007712
• Permutations, key, A003274
• permutations, largest order of: A000793*, A002809
• Permutations, maximal order of, A000793, A002809
• Permutations, menage, A002484
• Permutations, necklace, A003322
• Permutations, odd, A001465
• permutations, of n letters: A000142*
• permutations, of order 2: A001189*, A001185*
• permutations, of order dividing k, for k=2,3,4,5,... (1): A000085 A001470 A001472 A053495 A053496 A053497 A053498 A053499 A053500 A053501
• permutations, of order dividing k, for k=2,3,4,5,... (2): A053502 A053503 A053504 A053505 A005388
• permutations, of the positive (or nonnegative) integers , sequences related to :
• permutations, of the integers, conjectured: A064389 (This entry needs to be greatly expanded!)
• permutations, of the integers, each paired with its inverse: ( 1) A003188-A006068 A004484-A064206 A004485-A064207 A004486-A064208 A004487-A064211 A029654-A064360
• permutations, of the integers, each paired with its inverse: ( 2) A064413-A064664 A032447-A064275 A035312-A035358 A035506-A064357 A035513-A064274 A047708-A048850
• permutations, of the integers, each paired with its inverse: ( 3) A048672-A064273 A048673-A064216 A048679-A048680 A052330-A064358 A059900-A059884
• permutations, of the integers, each paired with its inverse: ( 4) A052331-A064359 A054238-A054239 A054424-A054426 A054427-A054428 A064706-A064707 A034175-A064928
• permutations, of the integers, each paired with its inverse: ( 5) A064929-A064930 A057027-A064578 A054082-A064579 A065164-A065168 A065165-A065169 A065166-A065170
• permutations, of the integers, each paired with its inverse: ( 6) A065171-A065172 A065174-A065175 A065181-A065182 A065183-A065184 A065186-A065187 A065188-A065189
• permutations, of the integers, each paired with its inverse: ( 7) A006368-A006369 A057114-A057115 A054084-A064786 A053212-A064787
• permutations, of the integers, each paired with its inverse: ( 8) A060736-A064788 A054068-A054069 A057028-A064789
• permutations, of the integers, each paired with its inverse: ( 9) A060734-A064790 A064537-A064791 A064736-A064745 A065249-A065250 A065259-A065260
• permutations, of the integers, each paired with its inverse: (10) A065263-A065264 A065265-A065266 A065269-A065270 A065271-A065272 A065275-A065276 A065277-A065278
• permutations, of the integers, each paired with its inverse: (11) A065281-A065282 A065283-A065284 A065287-A065288 A065289-A065290 A065253-A065254 A065306-A065307
• permutations, of the integers, each paired with its inverse: (12) A004515-A065256 A065257-A065258 A064417-A064956 A064418-A064958 A064419-A064959 A036552-A065037
• permutations, of the integers, each paired with its inverse: (13) A065649-A065650 A065627-A065628 A065629-A065630 A065631-A065632 A065633-A065634 A065635-A065636
• permutations, of the integers, each paired with its inverse: (14) A065637-A065638 A065639-A065640 A065660-A065661 A065662-A065663 A065664-A065665 A065666-A065667
• permutations, of the integers, each paired with its inverse: (15) A065668-A065669 A065670-A065671 A065672-A065673 A065561-A065578 A065562-A065579 A065934-A065935
• permutations, of the integers, each paired with its inverse: (16) A066248-A066249 A066250-A066251 A067587-A066884 A068225-A068226 A072061-A072062
• permutations, of the integers, each paired with its inverse: (17) A072732-A072733 A072734-A072735 A072793-A072794 A074305-A074306 A074307-A074308
• permutations, of the integers, each paired with its inverse: (18) A051261-A077226 A084469-A084470 A084453-A084454 A084455-A084466 A084459-A084460
• permutations, of the integers, each paired with its inverse: (19) A084461-A084462 A084489-A084490 A084491-A084492 A084493-A084494 A084495-A084496
• permutations, of the integers, each paired with its inverse: (20) A084497-A084498 A084499-A084530 A098003-A098485 A194988-A194989
• permutations, of the integers, induced by Catalan rerankings, each paired with its inverse: (1) A071651-A071652, A071653-A071654, A072634-A072635, A072636-A072637, A072656-A072657, A072658-A072659
• permutations, of the integers, induced by Catalan rerankings, each paired with its inverse: (2) A072646-A072647, A072787-A072788, A072764-A072765, A072766-A072767, A075161-A075162, A075168-A075169
• permutations, of the integers, self-inverse: (01): A000027, A002251, A003100, A004442, A004488, A011262, A014681, A018220, A018221, A018222,
• permutations, of the integers, self-inverse: (02): A019444, A020703, A026239, A026250, A026255, A026262, A038722, A048647, A054429, A054430,
• permutations, of the integers, self-inverse: (03): A056011, A056019, A056023, A056539, A057163, A057164, A057300, A057508, A059893, A059894,
• permutations, of the integers, self-inverse: (04): A060125, A061579, A061898, A064429, A064505, A064614, A065190, A065652, A069766, A069769,
• permutations, of the integers, self-inverse: (05): A069771, A069772, A069787, A069888, A069889, A071065, A072026, A072027, A072028, A072029,
• permutations, of the integers, self-inverse: (06): A072356, A072796, A072797, A072798, A072799, A073280, A073281, A073675, A073842, A074066,
• permutations, of the integers, self-inverse: (07): A074067, A074068, A080412, A081241, A083569, A084483, A085240, A086572, A086962, A086963,
• permutations, of the integers, self-inverse: (08): A086964, A088337, A094510, A094681, A100527, A100830, A106649, A108590, A108591, A108592,
• permutations, of the integers, self-inverse: (09): A108593, A108599, A108971, A109233, A109236, A109239, A109250, A109261, A110119, A114538,
• permutations, of the integers, self-inverse: (10): A114578, A114579, A114882, A115094, A115182, A115303, A115304, A115305, A115306, A115307,
• permutations, of the integers, self-inverse: (11): A115308, A115309, A117120, A117303, A118012, A120229, A120230, A120913, A122111, A125566,
• permutations, of the integers, self-inverse: (12): A125979, A125980, A126009, A126290, A126320, A127387, A127388, A129594, A129608, A130339,
• permutations, of the integers, self-inverse: (13): A130340, A130373, A130374, A130918, A130981, A130982, A131173, A132340, A132664, A132665,
• permutations, of the integers, self-inverse: (14): A132666, A132667, A132668, A132669, A132670, A132671, A132672, A132673, A132674, A135044,
• permutations, of the integers, self-inverse: (15): A137662, A137805, A138236, A153150, A154125, A154126, A159253, A159586, A159587, A159588,
• permutations, of the integers, self-inverse: (16): A160652, A162750, A162853, A163327, A163332, A163333, A163807, A164088, A165199, A166166,
• permutations, of the integers, self-inverse: (17): A166404
• permutations, of the integers, signature-permutations induced by Catalan automorphisms, sequences related to :
• permutations, of the integers, signature-permutations of Catalan automorphisms, (01) A057163 A057164 A057508 A069766 A069769 A069770 A069771 A069772 A069787 A069888 A069889
• permutations, of the integers, signature-permutations of Catalan automorphisms, (02) A072796 A072797 A073280 A073281 A082313 A082314
• permutations, of the integers, signature-permutations of Catalan automorphisms, (03) A057117-A057118 A057161-A057162 A057501-A057502 A057503-A057504 A057505-A057506 A057509-A057510
• permutations, of the integers, signature-permutations of Catalan automorphisms, (04) A057511-A057512 A069767-A069768 A069773-A069774 A069775-A069776 A071661-A071662 A071663-A071664
• permutations, of the integers, signature-permutations of Catalan automorphisms, (05) A071665-A071666 A071667-A071668 A071669-A071670 A071655-A071656 A071657-A071658 A071659-A071660
• permutations, of the integers, signature-permutations of Catalan automorphisms, (06) A072090-A072091 A072092-A072093 A072094-A072095 A072621-A072622 A072088-A072089 A073269-A073270
• permutations, of the integers, signature-permutations of Catalan automorphisms, (07) A073282-A073283 A073284-A073285 A073286-A073287 A073288-A073289 A073194-A073195 A073196-A073197
• permutations, of the integers, signature-permutations of Catalan automorphisms, (08) A073198-A073199 A073205-A073206 A073207-A073208 A073209-A073210 A073290-A073291 A073292-A073293
• permutations, of the integers, signature-permutations of Catalan automorphisms, (09) A073294-A073295 A073296-A073297 A073298-A073299 A074679-A074680 A074681-A074682 A074683-A074684
• permutations, of the integers, signature-permutations of Catalan automorphisms, (10) A074685-A074686 A074687-A074688 A074689-A074690 A082315-A082316 A082317-A082318 A082319-A082320
• permutations, of the integers, signature-permutations of Catalan automorphisms, (11) A082321-A082322 A082323-A082324 A082325-A082326 A082331-A082332 A082333-A082334 A082335-A082336
• permutations, of the integers, signature-permutations of Catalan automorphisms, (12) A082337-A082338 A082339-A082340 A082341-A082342 A082345-A082346 A082347-A082348 A082349-A082350
• permutations, of the integers, signature-permutations of Catalan automorphisms, (13) A082351-A082352 A082353-A082354 A082355-A082356 A082357-A082358 A082359-A082360
• permutations, of the integers, tables of: A003987 A018219 A054081 A065167 A073200
• permutations, permutation arrays:: A005677, A006841
• permutations, quasi-alternating: A000708, A001758
• Permutations, restricted, A003407, A006595, A003011, A002777, A000382, A007016, A000496
• permutations, self-conjugate: A000085
• permutations, self-inverse: A000085*
• permutations, special: A003109, A003110, A003111
• permutations, square: A003483
• permutations, symmetric: A000900, A000901, A000902
• permutations, unreformed: A007711
• permutations, with a square root: A003483
• permutations, with fixed points: A002467*
• permutations, with no fixed points: A000166*
• Permutations, with no hits, A003471, A000316, A000459
• Permutations, with strong fixed points, A006932
• permutations, zero-entropy: A006948
• Perrin sequence: A001608*
• persistence , sequences related to :
• persistence (additive): A006050*, A031286* and A045646*
• persistence (multiplicative): A003001* and A031346*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Ph

• phi : see golden ratio phi
• phi(n) (A000010): see totient function phi(n)
• Phi(n): A005728*
• phi, Phi: A000108, A001006, A007477, A025262, A025268
• pi(x), sequences related to :
• pi(x), number of primes <= x: A000720*
• pi(x), pi(10^n): A006880
• Pi, sequences related to :
• Pi, continued cotangent for: A002667*
• Pi, continued fraction for: A001203*
• Pi, continued fraction for: records: A007541, A033089, A033090
• Pi, convergents to: A002485*/A002486*
• Pi, decimal expansion of: A000796*
• Pi, see also (1): A007514 A006941 A000796* A001355 A001203 A007523 A005042 A002667 A006524 A002161 A007541 A001467
• Pi, see also (2): A001466 A002388 A006934 A005149 A005148 A068089 A068079 A068028 A049534 A101815 A101816
• Pi, strings of digits in: ( 1) A014976, A050201, A050202, A083598, A083599, A083600, A083601
• Pi, strings of digits in: ( 2) A053745, A050208, A050209, A083602, A083603, A083604, A083605
• Pi, strings of digits in: ( 3) A053746, A050215, A083606, A083607, A083608, A083609
• Pi, strings of digits in: ( 4) A053747, A050222, A083610, A083611, A083612, A083613, A083614
• Pi, strings of digits in: ( 5) A053748, A050230, A083615, A083616, A083617, A083618, A083619
• Pi, strings of digits in: ( 6) A053749, A050238, A083620, A083621, A083622, A083623, A083624
• Pi, strings of digits in: ( 7) A053750, A050245, A083625, A083626, A083627, A083628, A083629, A083630
• Pi, strings of digits in: ( 8) A053751, A050254, A083631, A083632, A083633, A083634, A083635, A083636
• Pi, strings of digits in: ( 9) A053752, A050263, A083637, A083638, A083639, A083640, A083641
• Pi, strings of digits in: (10) A053753, A050272, A083642, A083643, A083644, A083645, A083646
• piano keyboard: A059620*, A079731, A060106, A060107, A081031, A081032
• picture-perfect numbers: A069942
• Pierce expansions: A006275, A006276, A006283, A006284
• Pierpont primes: see primes, Pierpont
• Pisano numbers: see Pisano periods
• Pisano periods: A001175*
• Pisano periods, generalized: listed in R. J. Mathar, A Table of Pisano Period Lengths (1) A000032 A000034 A000045 A000051 A000073 A000129 A000213 A000225 A000285 A000290 A000292 A000578 A001045 A001060 A001075 A001076 A001175 A001333 A001353 A001519 A001590 A001608 A001644 A001834 A001906 A002532 A002533 A002605 A002878 A003462 A003665 A003688 A005248 A005668 A006012 A006130 A006131 A006138 A006190 A006355
• Pisano periods, generalized: listed in R. J. Mathar, A Table of Pisano Period Lengths (2) A006495 A007070 A007482 A009116 A009545 A010892 A013655 A014551 A014983 A015440 A015441 A015442 A015443 A015518 A015519 A015521 A015523 A015530 A015531 A015532 A015535 A015537 A015540 A015541 A015551 A015564 A015568 A015574 A015576 A015580 A015584 A015587 A015591 A016116 A020695 A020701 A020712 A020992 A021006 A022086
• Pisano periods, generalized: listed in R. J. Mathar, A Table of Pisano Period Lengths (3) A022095 A022097 A022098 A022099 A022100 A022101 A022102 A022103 A026150 A028859 A030195 A038608 A038754 A046717 A046738 A048573 A048693 A048694 A049347 A052533 A052918 A054490 A055099 A056594 A057079 A057087 A057088 A057597 A057681 A061084 A061347 A063727 A072263 A072265 A077917 A077957 A077966 A077985 A078008 A078020
• Pisano periods, generalized: listed in R. J. Mathar, A Table of Pisano Period Lengths (4) A078069 A083099 A083858 A085750 A087451 A090132 A090591 A094359 A098149 A098150 A099087 A099843 A104217 A104769 A104934 A105476 A106291 A106293 A107920 A108520 A110512 A122994 A123335 A125905 A130472 A132429 A164539 A174191 A175181 A175182 A175183 A175184 A175185 A175286 A175289 A175290 A175291 A186646
• Pisot sequences, sequences related to :
• Pisot sequences, definition: A008776*
• Pisot sequences, warning about recurrences for: A010925
• Pisot sequences: ( 1) A000051 A000079 A000244 A000302 A000351 A000400 A000420 A001018 A001019 A001519 A004171 A007283
• Pisot sequences: ( 2) A007484 A007699 A008776 A009056 A010900 A010901 A010902 A010903 A010904 A010905 A010906 A010907
• Pisot sequences: ( 3) A010908 A010909 A010910 A010911 A010912 A010913 A010914 A010915 A010916 A010917 A010919 A010920
• Pisot sequences: ( 4) A010922 A010924 A010925 A011557 A014001 A014002 A014003 A014004 A014005 A014006 A014007 A014008
• Pisot sequences: ( 5) A018910 A018914 A018920 A019492 A020695 A020696 A020698 A020701 A020702 A020704 A020705 A020706
• Pisot sequences: ( 6) A020707 A020708 A020709 A020710 A020711 A020712 A020713 A020714 A020715 A020716 A020717 A020718
• Pisot sequences: ( 7) A020719 A020720 A020721 A020722 A020723 A020727 A020728 A020729 A020730 A020732 A020734 A020735
• Pisot sequences: ( 8) A020736 A020737 A020739 A020741 A020742 A020743 A020744 A020745 A020746 A020747 A020748 A020749
• Pisot sequences: ( 9) A020750 A020751 A020752 A021000 A021001 A021004 A021006 A021008 A021011 A021013 A021014 A048575
• Pisot sequences: (10) A048576 A048577 A048578 A048579 A048580 A048581 A048582 A048583 A048584 A048585 A048586 A048587
• Pisot sequences: (11) A048588 A048589 A048590 A048591 A048592 A048624 A048625 A048626 A051016 A051017
• planar , sequences related to :
• planar graphs: see graphs, planar
• planar vs plane: some authors make a distinction between "plane", meaning embedded in the plane with a distinguished exterior region, and "planar", meaning embedded in the sphere (with no distinguished region)
• Planck's constant: A003676
• plastic constant: A060006
• plastic number: A060006
• plots, misleading: see deceptive plots
• plus perfect numbers: A005188*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Poi

• Poincare , sequences related to :
• Poincare conjecture: A001676*
• Poincare series: see Molien series
• pointed connected graphs: A126100; pointed connected planar graphs: A126201; pointed curves: A074059, A074060; pointed groupoids: A006448, A038015, A038016, A038017; pointed groups: A126103, A126102; pointed polyominoes: A126202; pointed rooted trees: A000107, A000312; pointed trees = rooted trees: (A000081)
• pointed objects: pointed algebras: see groupoids, pointed;
• points on surface of various polyhedra, sequences related to :
• points on surface of various polyhedra:: A005893, A005918, A005899, A005897, A005919, A005901, A005914, A005905, A005903, A005911
• poker , sequences related to :
• poker: (1) A002761 A002806 A002834 A002847 A002879 A003480 A007052 A007070 A014353 A014355 A014356 A014357
• poker: (2) A014358 A014404 A053080 A053081 A053082 A053083 A053084 A053085 A053086 A057694 A057695 A057796
• poker: (3) A057797 A057798 A057799 A057800 A057801 A057802 A057803 A057804 A057805 A057806 A057807 A057808

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Pol

• Polish: see also Index entries for sequences related to number of letters in n
• politeness: A069283
• POLS, see Latin squares, mutually orthogonal
• Polya's conjecture, sequences related to :
• Polya's conjecture: A072203*, A028488
• polyaboloes: A006074*
• polyares: A057724, A057725
• polycubes, sequences related to :
• polycubes: A000162*
• polyedges: see polyominoes
• polyforms, see polyominoes
• polygamma function: A006955, A006956
• polygonal numbers, sequences related to :
• polygonal numbers, centered, see centered polygonal numbers
• polygonal numbers: A057145*
• polygonal numbers: for n=3..24 (1): A000217, A000290, A000326, A000384, A000566, A000567, A001106, A001107,
• polygonal numbers: for n=3..24 (2): A051682, A051624, A051865, A051866, A051867, A051868, A051869, A051870,
• polygonal numbers: for n=3..24 (3): A051871, A051872, A051873, A051874, A051875, A051876
• polygons , sequences related to :
• polygons (1):: A003401, A001004, A003455, A000940, A000939, A005036, A003456, A006725, A006724, A003450
• polygons (2):: A003454, A003452, A005034, A003447, A005768, A005436, A002931, A006781, A005040, A003445
• polygons (3):: A007169, A006782, A003442, A005038, A002058, A006743, A006774, A000207, A003453, A003449
• polygons (4):: A003441, A001002, A006772, A003448, A005419, A006783, A001409, A002816, A003443, A002059
• polygons (5):: A005397, A003451, A003444, A005035, A002293, A005039, A001397, A001396, A002895, A002060
• polygons (6):: A007220, A005033, A006773, A005396, A002898, A005037, A002295, A002896, A007221, A002296
• polygons (7):: A005398, A006726, A006726, A005770, A002055, A001335, A002899, A005769, A002056, A007160, A005782, A001413, A007222, A001337, A001667
• polygons constructible with ruler and compass: A003401*
• polygons constructible with ruler and compass: see also A000108 A004169 A004729 A005109 A049013
• polygons with all diagonals drawn: see Poonen-Rubinstein paper
• polyhedra , sequences related to :
• polyhedra (1):: A007026, A002840, A007024, A006868, A006866, A007029, A007021, A002883, A006867, A006869, A000944, A007034, A002856
• polyhedra (2):: A007030, A007023, A007022, A000287, A007027, A007025, A007028, A007036, A007031, A007032, A007037, A007035, A007033
• polyhedra, allomorphic: A002883
• polyhedra, regular: A060296, A053016, A063924, A063925, A063926, A063927, A063722
• polyhedra: A000944*, A049337*, A000109* (simplicial)
• polyhes: A057712
• polyiamonds: A000577*
• polyknights: A030444, A030445, A030446, A030447, A030448
• polynomials , sequences related to :
• polynomials producing primes: see primes, produced by polynomials
• Polynomials, Bell, A001861
• polynomials, Bernoulli: see Bernoulli polynomials
• Polynomials, Bessel, A001518, A001516, A001514, A001880, A001881
• polynomials, Boolean: A169912, A169913, A169914
• Polynomials, by height, A005409
• Polynomials, characteristic, A006135, A006136
• Polynomials, Chebyshev, A005583, A005584, A002680, A002700, A001793, A001794, A002697, A007701, A006974, A006975, A006976, A002698
• Polynomials, cyclotomic, A007273, A004124
• polynomials, cyclotomic, inverse, Phi(1..9): A033999, A049347, A056594, A010891, A010892, A014016, A014017, A014018
• polynomials, cyclotomic, inverse, Phi(10..19): A014019, A014020, A014021, A014022, A014023, A014024, A014025, A014026, A014027, A014028
• polynomials, cyclotomic, inverse, Phi(100..109): A014111, A014114
• polynomials, cyclotomic, inverse, Phi(110..119): A014119, A014123, A014124, A014128
• polynomials, cyclotomic, inverse, Phi(120..129): A014129, A014135
• polynomials, cyclotomic, inverse, Phi(130..139): A014139, A014141, A014142, A014147
• polynomials, cyclotomic, inverse, Phi(140..149): A014149, A014152, A014154
• polynomials, cyclotomic, inverse, Phi(150..159): A014159, A014163, A014164, A014165
• polynomials, cyclotomic, inverse, Phi(160..169): A014170, A014174, A014177
• polynomials, cyclotomic, inverse, Phi(170..179): A014179, A014183, A014184
• polynomials, cyclotomic, inverse, Phi(180..189): A014189, A014191, A014194, A014195, A014196
• polynomials, cyclotomic, inverse, Phi(190..199): A014199, A014204, A014207
• polynomials, cyclotomic, inverse, Phi(20..29): A014029, A014030, A014031, A014032, A014033, A014034, A014035, A014036, A014037, A014038
• polynomials, cyclotomic, inverse, Phi(200..209): A014212, A014218
• polynomials, cyclotomic, inverse, Phi(210..219): A014219, A014226
• polynomials, cyclotomic, inverse, Phi(220..229): A014229, A014230
• polynomials, cyclotomic, inverse, Phi(230..239): A014239, A014240, A014247
• polynomials, cyclotomic, inverse, Phi(240..249): A014256
• polynomials, cyclotomic, inverse, Phi(250..259): A014262, A014264, A014268
• polynomials, cyclotomic, inverse, Phi(260..269): A014269, A014275
• polynomials, cyclotomic, inverse, Phi(270..279): A014282
• polynomials, cyclotomic, inverse, Phi(280..289): A014289, A014294, A014295, A014296
• polynomials, cyclotomic, inverse, Phi(290..299): A014299, A014308
• polynomials, cyclotomic, inverse, Phi(30..39): A014039, A014040, A014041, A014042, A014043, A014044, A014045, A014047, A014048
• polynomials, cyclotomic, inverse, Phi(300..309): A014310, A014317
• polynomials, cyclotomic, inverse, Phi(310..319): A014319, A014324, A014328
• polynomials, cyclotomic, inverse, Phi(320..329): A014331, A014332, A014338
• polynomials, cyclotomic, inverse, Phi(330..339): A014339
• polynomials, cyclotomic, inverse, Phi(340..349): A014349, A014350, A014354
• polynomials, cyclotomic, inverse, Phi(350..359): A014359, A014366
• polynomials, cyclotomic, inverse, Phi(360..369): A014373
• polynomials, cyclotomic, inverse, Phi(370..379): A014379, A014380, A014383, A014386
• polynomials, cyclotomic, inverse, Phi(380..389): A014389, A014394
• polynomials, cyclotomic, inverse, Phi(390..399): A014399, A014400, A014408
• polynomials, cyclotomic, inverse, Phi(40..49): A014049, A014051, A014053, A014054, A014055, A014057
• polynomials, cyclotomic, inverse, Phi(400..409): A014412, A014415, A014416
• polynomials, cyclotomic, inverse, Phi(410..419): A014422, A014427
• polynomials, cyclotomic, inverse, Phi(420..429): A014429, A014436, A014438
• polynomials, cyclotomic, inverse, Phi(430..439): A014443, A014444, A014446
• polynomials, cyclotomic, inverse, Phi(440..449): A014451
• polynomials, cyclotomic, inverse, Phi(450..459): A014460, A014464
• polynomials, cyclotomic, inverse, Phi(460..469): A014471, A014474, A014478
• polynomials, cyclotomic, inverse, Phi(470..479): A014482, A014485
• polynomials, cyclotomic, inverse, Phi(480..489): A014490, A014492
• polynomials, cyclotomic, inverse, Phi(490..499): A014502, A014503, A014504, A014506
• polynomials, cyclotomic, inverse, Phi(50..59): A014059, A014060, A014061, A014063, A014064, A014065, A014066, A014067
• polynomials, cyclotomic, inverse, Phi(500..509): A014515
• polynomials, cyclotomic, inverse, Phi(510..519): A014519, A014520, A014526, A014527
• polynomials, cyclotomic, inverse, Phi(520..529): A014534, A014536
• polynomials, cyclotomic, inverse, Phi(530..539): A014541, A014542, A014548
• polynomials, cyclotomic, inverse, Phi(60..69): A014069, A014071, A014072, A014074, A014075, A014078
• polynomials, cyclotomic, inverse, Phi(70..79): A014079, A014084, A014086, A014087
• polynomials, cyclotomic, inverse, Phi(80..89): A014093, A014094, A014096
• polynomials, cyclotomic, inverse, Phi(90..99): A014099, A014100, A014102, A014104, A014108
• polynomials, cyclotomic, Phi(10..19): A010890
• polynomials, cyclotomic, Phi(100..109): A011649, A011650
• polynomials, cyclotomic, Phi(110..119): A011651, A011652, A011653, A011654
• polynomials, cyclotomic, Phi(120..129): A016328, A016329
• polynomials, cyclotomic, Phi(130..139): A016330, A016331, A016332, A016333
• polynomials, cyclotomic, Phi(140..149): A016334, A016335, A016336
• polynomials, cyclotomic, Phi(150..159): A016337, A016338, A016339
• polynomials, cyclotomic, Phi(160..169): A016341, A016342, A016343
• polynomials, cyclotomic, Phi(170..179): A016344, A016345, A016346
• polynomials, cyclotomic, Phi(180..189): A016347, A016348, A016349, A016350, A016351
• polynomials, cyclotomic, Phi(190..199): A016352, A016353, A016354
• polynomials, cyclotomic, Phi(20..29): A011632
• polynomials, cyclotomic, Phi(200..209): A016355, A016356
• polynomials, cyclotomic, Phi(210..219): A016357, A016358
• polynomials, cyclotomic, Phi(220..229): A016359, A016360
• polynomials, cyclotomic, Phi(230..239): A016361, A016362, A016363
• polynomials, cyclotomic, Phi(240..249): A016364
• polynomials, cyclotomic, Phi(250..259): A016365, A016366, A016367
• polynomials, cyclotomic, Phi(260..269): A016368, A016369
• polynomials, cyclotomic, Phi(270..279): A016370
• polynomials, cyclotomic, Phi(280..289): A016371, A016372, A016373, A016374
• polynomials, cyclotomic, Phi(290..299): A016375, A016376
• polynomials, cyclotomic, Phi(30..39): A011633, A011634
• polynomials, cyclotomic, Phi(300..309): A016377, A016378
• polynomials, cyclotomic, Phi(310..319): A016379, A016380, A016381
• polynomials, cyclotomic, Phi(320..329): A016382, A016383, A016384
• polynomials, cyclotomic, Phi(330..339): A016385
• polynomials, cyclotomic, Phi(340..349): A016386, A016387, A016388
• polynomials, cyclotomic, Phi(350..359): A016389, A016390
• polynomials, cyclotomic, Phi(360..369): A016391
• polynomials, cyclotomic, Phi(370..379): A016392, A016393, A016394, A016395
• polynomials, cyclotomic, Phi(380..389): A016396, A016397
• polynomials, cyclotomic, Phi(390..399): A016398, A016399, A016400
• polynomials, cyclotomic, Phi(40..49): A011635, A011636
• polynomials, cyclotomic, Phi(400..409): A016401, A016402, A016403
• polynomials, cyclotomic, Phi(410..419): A016404, A016405
• polynomials, cyclotomic, Phi(420..429): A016406, A016407, A016408
• polynomials, cyclotomic, Phi(434..439): A016409, A016410, A016411
• polynomials, cyclotomic, Phi(440..449): A016412
• polynomials, cyclotomic, Phi(450..459): A016413, A016414
• polynomials, cyclotomic, Phi(460..469): A016415, A016416, A016417
• polynomials, cyclotomic, Phi(470..479): A016418, A016419
• polynomials, cyclotomic, Phi(480..489): A016420, A016421
• polynomials, cyclotomic, Phi(490..499): A016422, A016423, A016424, A016425
• polynomials, cyclotomic, Phi(500..509): A016426, A016427, A016428
• polynomials, cyclotomic, Phi(60..69): A011637, A011638, A011639, A011640
• polynomials, cyclotomic, Phi(70..79): A011641, A011642
• polynomials, cyclotomic, Phi(80..89): A011643, A011644
• polynomials, cyclotomic, Phi(90..99): A011645, A011646, A011647, A011648
• Polynomials, discriminants of, A004124, A007701, A001782, A006312
• polynomials, divisors of x^n-1: see divisors
• polynomials, Euler: see Euler polynomials
• Polynomials, Gandhi, A005440, A005989, A005990
• Polynomials, Hammersley, A006846
• polynomials, Hermite: see Hermite polynomials
• Polynomials, hit, A001885, A001884, A004307, A001886, A001889, A001891, A001888, A001883, A001887, A001890, A004309, A004308
• polynomials, irreducible over a finite field: (1) A002475, A056679, A056679, A057460, A057461, A057463, A057474, A057476, A057477, A057478, A057479, A057480,
• polynomials, irreducible over a finite field: (2) A057481, A057482, A057483, A057484, A057485, A057487, A057488, A057489, A057496, A057751, A058059, A058203,
• polynomials, irreducible over a finite field: (3) A058216, A058217, A058219, A058234, A058235, A058236, A058237, A058238, A058240, A058242, A058243, A058334,
• polynomials, irreducible over a finite field: (4) A058857, A059006, A071428, A071522, A071565, A071566, A071642
• polynomials, irreducible over GF(q), q >= 4: A058334, A058857, A059006, A071522, A071565, A071566
• polynomials, irreducible, binary, degree divides n: A000031*
• polynomials, irreducible, binary, degree n: A001037*, A058943*, A027375
• polynomials, irreducible, over GF(2): see polynomials, irreducible, binary
• polynomials, irreducible, over GF(3), degree divides n: A001693*, A001867
• polynomials, irreducible, over GF(3), degree n: A027376*
• polynomials, irreducible, over GF(4), degree divides n: A001868, A054719
• polynomials, irreducible, over GF(4), degree n: A027377*
• polynomials, irreducible, over GF(5): A001692
• polynomials, irreducible, over GF(7): A001693
• polynomials, Laguerre: see Laguerre polynomials
• polynomials, Legendre: see Legendre polynomials
• Polynomials, menage, A000033, A000159, A000181, A000185, A000425
• polynomials, monic irreducible over finite fields: A058944, A058948, A058945, A058946
• Polynomials, orthogonal, A002690, A002691
• Polynomials, period, A006308, A006311, A006309, A006312, A006310
• polynomials, polynomial identities: A005729
• polynomials, primitive: A000020 A011260* A027385 A027695 A027741 A027743 A027744 A027745 A058947*
• Polynomials, relatively prime, A001115
• Polynomials, rook, A004306, A001924, A005777, A001925, A001926, A005778
• polynomials, Shapiro: A001782
• polynomials, trinomials irreducible over GF(2): (2) A057483, A057751
• polynomials, trinomials irreducible over GF(3): (1) A058059, A058235, A058236, A058237, A058238, A058240, A058242, A058243, A058234, A058203, A058217, A058216,
• polynomials, trinomials irreducible over GF(3): (2) A058219
• polyominoes , sequences related to :
• polyominoes (1):: A001933, A001071, A006748, A002215, A001420, A006958, A003104, A000104, A002216, A006746, A001169, A001170, A001168
• polyominoes (2):: A006027, A000988, A002214, A006986, A005519, A005435, A005963, A006766, A000228, A006535, A002212, A001207
• polyominoes (3):: A006026, A001931, A006759, A006767, A006534, A006765, A006762, A006770, A006760, A006747, A006749, A002213, A006758, A001419, A006768, A006761, A006763, A006764
• polyominoes : A000105*
• polyominoes, 3-dimensional: A000162*
• polyominoes, hexagonal: A000228*, A006535, A018190, A030225, A001998, A002216, A005963, A036359
• polyominoes, indecomposable: A125709 A125753 A125759 A125761 A126742 A126743
• polyominoes, rotationally symmetric: A006747
• polyominoes, sets of four that are related: A000988, A000105, A151514, A002013
• polyominoes, sets of four that are related: A006534, A000577, A151517, A151518
• polyominoes, sets of four that are related: A006535, A000228, A151515, A151516
• polyominoes, sets of four that are related: A151519, A006074, A151520, A151521
• polyominoes, sets of four that are related: A151522, A056780, A151523, A151527
• polyominoes, sets of four that are related: A151522, A056783, A151523, A151524
• polyominoes, sets of four that are related: A151528, A057786, A151529, A151530
• polyominoes, sets of four that are related: A151531, A057784, A151532, A151533
• polyominoes, sets of four that are related: A151534, A159866, A151535, A151536
• polyominoes, sets of four that are related: A151537, A019988, A151538, A037245
• polyominoes, sets of four that are related: A151539, A159867, A151540, A151541
• polyominoes, triangular: A000577*
• polyominoes; full list of sequences related to: (001) A000096 A000104 A000105 A000108 A000139 A000142 A000162 A000166 A000228 A000254 A000337 A000522
• polyominoes; full list of sequences related to: (002) A000577 A000891 A000984 A000988 A001003 A001053 A001071 A001168 A001169 A001170 A001207 A001224
• polyominoes; full list of sequences related to: (003) A001394 A001399 A001405 A001419 A001420 A001519 A001524 A001700 A001764 A001787 A001788 A001835
• polyominoes; full list of sequences related to: (004) A001844 A001870 A001931 A001933 A001998 A002013 A002212 A002213 A002214 A002215 A002216 A002467
• polyominoes; full list of sequences related to: (005) A002538 A002620 A002627 A002694 A002894 A003104 A003167 A003480 A004003 A005178 A005435 A005436
• polyominoes; full list of sequences related to: (006) A005519 A005768 A005769 A005770 A005803 A005963 A006013 A006026 A006027 A006074 A006318 A006534
• polyominoes; full list of sequences related to: (007) A006535 A006659 A006724 A006743 A006746 A006747 A006748 A006749 A006758 A006759 A006760 A006761
• polyominoes; full list of sequences related to: (008) A006762 A006763 A006764 A006765 A006766 A006767 A006768 A006770 A006958 A007317 A007743 A007808
• polyominoes; full list of sequences related to: (009) A007846 A008275 A008574 A008592 A008602 A008776 A010683 A011117 A014559 A016933 A016957 A017293
• polyominoes; full list of sequences related to: (010) A017341 A017569 A018190 A019439 A019988 A022144 A022444 A022445 A024311 A026106 A026118 A026298
• polyominoes; full list of sequences related to: (011) A027709 A028247 A028399 A030222 A030223 A030224 A030225 A030226 A030227 A030228 A030233 A030234
• polyominoes; full list of sequences related to: (012) A030235 A030435 A030436 A030444 A030445 A030446 A030447 A030448 A030519 A030520 A030525 A030529
• polyominoes; full list of sequences related to: (013) A030532 A030534 A033184 A033484 A033877 A033878 A034010 A036359 A036364 A036365 A036366 A036367
• polyominoes; full list of sequences related to: (014) A036368 A036369 A036496 A037245 A038119 A038140 A038141 A038142 A038143 A038144 A038145 A038146
• polyominoes; full list of sequences related to: (015) A038147 A038392 A038577 A038578 A038579 A038622 A038718 A038731 A039625 A039626 A039627 A039628
• polyominoes; full list of sequences related to: (016) A039629 A039630 A039631 A039632 A039633 A044043 A044045 A044046 A044047 A045445 A045648 A045649
• polyominoes; full list of sequences related to: (017) A046697 A046984 A047749 A047875 A048489 A048664 A049219 A049220 A049221 A049222 A049429 A049430
• polyominoes; full list of sequences related to: (018) A049540 A051738 A051743 A053022 A053090 A053091 A053151 A054359 A054360 A054361 A054963 A055022
• polyominoes; full list of sequences related to: (019) A055024 A055581 A055588 A056755 A056769 A056779 A056780 A056783 A056840 A056841 A056844 A056845
• polyominoes; full list of sequences related to: (020) A056846 A056877 A056878 A056879 A056880 A056881 A056882 A056883 A056884 A057051 A057418 A057419
• polyominoes; full list of sequences related to: (021) A057420 A057422 A057423 A057424 A057425 A057426 A057707 A057712 A057721 A057724 A057725 A057729
• polyominoes; full list of sequences related to: (022) A057730 A057753 A057766 A057779 A057784 A057786 A057973 A059483 A059573 A059678 A059679 A059680
• polyominoes; full list of sequences related to: (023) A059681 A059682 A059683 A059684 A059716 A060677 A061667 A063130 A063655 A065068 A066158 A066273
• polyominoes; full list of sequences related to: (024) A066281 A066283 A066287 A066288 A066331 A066453 A066454 A066822 A067675 A067676 A067769 A068091
• polyominoes; full list of sequences related to: (025) A068870 A070764 A070765 A070766 A070767 A070768 A071332 A071333 A071334 A071431 A073149 A073733
• polyominoes; full list of sequences related to: (026) A075125 A075198 A075199 A075200 A075201 A075202 A075203 A075204 A075205 A075206 A075207 A075208
• polyominoes; full list of sequences related to: (027) A075209 A075210 A075211 A075212 A075213 A075214 A075215 A075216 A075217 A075218 A075219 A075220
• polyominoes; full list of sequences related to: (028) A075221 A075222 A075223 A075224 A075678 A075679 A079102 A079103 A079104 A079105 A079106 A079402
• polyominoes; full list of sequences related to: (029) A079523 A079859 A079935 A081706 A082395 A082397 A082398 A084477 A084478 A084479 A084480 A084481
• polyominoes; full list of sequences related to: (030) A085478 A085929 A087656 A088972 A089454 A089455 A089456 A089457 A089458 A090992 A090993 A090994
• polyominoes; full list of sequences related to: (031) A090995 A091405 A092392 A092582 A093118 A093119 A093120 A093877 A093989 A093990 A093991 A093992
• polyominoes; full list of sequences related to: (032) A094097 A094164 A094165 A094166 A094168 A094169 A094170 A094638 A094864 A095968 A096004 A096267
• polyominoes; full list of sequences related to: (033) A097472 A099003 A099018 A099041 A099048 A099943 A099944 A099945 A100092 A100093 A100094 A100312
• polyominoes; full list of sequences related to: (034) A100313 A100314 A100315 A100316 A100822 A101409 A102699 A103464 A103465 A103466 A103467 A103468
• polyominoes; full list of sequences related to: (035) A103469 A103470 A103471 A103472 A103473 A104270 A104519 A105292 A105306 A105450 A105929 A108070
• polyominoes; full list of sequences related to: (036) A108071 A108072 A108838 A111189 A112509 A112510 A112511 A113174 A113227 A118797 A119532 A119602
• polyominoes; full list of sequences related to: (037) A119611 A120102 A120103 A120104 A120117 A120371 A120386 A120404 A120417 A120448 A120646 A120647
• polyominoes; full list of sequences related to: (038) A120648 A121149 A121150 A121151 A121193 A121194 A121198 A121286 A121298 A121299 A121300 A121301
• polyominoes; full list of sequences related to: (039) A121302 A121308 A121309 A121310 A121460 A121461 A121462 A121463 A121466 A121468 A121469 A121486
• polyominoes; full list of sequences related to: (040) A121552 A121553 A121554 A121555 A121579 A121580 A121581 A121582 A121583 A121584 A121585 A121586
• polyominoes; full list of sequences related to: (041) A121632 A121633 A121634 A121635 A121636 A121637 A121638 A121639 A121691 A121692 A121693 A121694
• polyominoes; full list of sequences related to: (042) A121695 A121696 A121697 A121698 A121745 A121746 A121747 A121748 A121749 A121750 A121751 A121752
• polyominoes; full list of sequences related to: (043) A121753 A121754 A121964 A121983 A122096 A122097 A122104 A122105 A122133 A122539 A122736 A122880
• polyominoes; full list of sequences related to: (044) A123044 A123104 A123105 A123106 A123140 A123141 A123142 A123205 A123209 A123277 A123284 A123285
• polyominoes; full list of sequences related to: (045) A123286 A123287 A123288 A123289 A123595 A123598 A123600 A123602 A123604 A123605 A123606 A123607
• polyominoes; full list of sequences related to: (046) A123645 A123660 A123661 A123662 A125709 A125709 A125753 A125753 A125759 A125759 A125761 A125761
• polyominoes; full list of sequences related to: (047) A126020 A126026 A126138 A126139 A126140 A126141 A126177 A126178 A126179 A126180 A126181 A126182
• polyominoes; full list of sequences related to: (048) A126183 A126184 A126185 A126186 A126187 A126188 A126189 A126190 A126202 A126321 A126322 A126323
• polyominoes; full list of sequences related to: (049) A126324 A126742 A126742 A126743 A126764 A126765 A127560 A127935 A128611 A129183 A129638 A129639
• polyominoes; full list of sequences related to: (050) A130616 A130622 A130623 A130866 A130867 A131467 A131481 A131482 A131486 A131487 A131488 A131635
• polyominoes; full list of sequences related to: (051) A132293 A134436 A134437 A135708 A135711 A135942 A136129 A137193 A140709 A140710 A142886 A144553
• polyominoes; full list of sequences related to: (052) A144554 A144876 A147680 A151514 A151515 A151516 A151517 A151518 A151519 A151520 A151521 A151522
• polyominoes; full list of sequences related to: (053) A151523 A151524 A151525 A151526 A151527 A151528 A151529 A151530 A151531 A151532 A151533 A151534
• polyominoes; full list of sequences related to: (054) A151535 A151536 A151537 A151538 A151539 A151540 A151541 A153334 A153335 A153336 A153337 A153338
• polyominoes; full list of sequences related to: (055) A153339 A153340 A153360 A153361 A153362 A153363 A153364 A153365 A153366 A153367 A153368 A153369
• polyominoes; full list of sequences related to: (056) A153370 A153371 A153372 A153373 A155217 A155218 A155219 A155220 A155221 A155222 A155223 A155224
• polyominoes; full list of sequences related to: (057) A155225 A155226 A155227 A155228 A155229 A155230 A155231 A155232 A155233 A155234 A155235 A155236
• polyominoes; full list of sequences related to: (058) A155237 A155238 A155239 A155240 A155241 A155242 A155243 A155244 A155245 A155246 A155247 A155248
• polyominoes; full list of sequences related to: (059) A155249 A155250 A155251 A155252 A155253 A155254 A155255 A155256 A155257 A155258 A155259 A155260
• polyominoes; full list of sequences related to: (060) A155261 A155262 A155263 A155264 A155265 A155266 A155267 A155268 A155269 A155270 A155271 A155272
• polyominoes; full list of sequences related to: (061) A155273 A155274 A155275 A155276 A155277 A155278 A155279 A155280 A155281 A155282 A155283 A155284
• polyominoes; full list of sequences related to: (062) A155285 A155286 A155287 A155288 A155289 A155290 A155291 A155292 A155293 A155294 A155295 A155296
• polyominoes; full list of sequences related to: (063) A155297 A155298 A155299 A155300 A155301 A155302 A155303 A155304 A155305 A155306 A155307 A155308
• polyominoes; full list of sequences related to: (064) A155309 A155310 A155311 A155312 A155313 A155314 A155315 A155316 A155317 A155318 A155319 A155320
• polyominoes; full list of sequences related to: (065) A155321 A155322 A155323 A155324 A155325 A155326 A155327 A155328 A155329 A155330 A155331 A155332
• polyominoes; full list of sequences related to: (066) A155333 A155334 A155335 A155336 A155337 A155338 A155339 A155340 A155341 A155342 A155343 A155344
• polyominoes; full list of sequences related to: (067) A155345 A155346 A155347 A155348 A155349 A155350 A155351 A155352 A155353 A155354 A155355 A155356
• polyominoes; full list of sequences related to: (068) A155357 A155358 A155359 A155360 A155361 A155362 A155363 A155364 A155365 A155366 A155367 A155368
• polyominoes; full list of sequences related to: (069) A155369 A155370 A155371 A155372 A155373 A155374 A155375 A155376 A155377 A155378 A155379 A155380
• polyominoes; full list of sequences related to: (070) A155381 A155382 A155383 A155384 A155385 A155386 A155387 A155388 A155389 A155390 A155391 A155392
• polyominoes; full list of sequences related to: (071) A155393 A155394 A155395 A155396 A155397 A155398 A155399 A155400 A155401 A155402 A155403 A155404
• polyominoes; full list of sequences related to: (072) A155405 A155406 A155407 A155408 A155409 A155410 A155411 A155412 A155413 A155414 A155415 A155416
• polyominoes; full list of sequences related to: (073) A155417 A155418 A155419 A155420 A155421 A155422 A155423 A155424 A155425 A155426 A155427 A155428
• polyominoes; full list of sequences related to: (074) A155429 A155430 A155431 A155432 A155433 A155434 A155435 A155436 A155437 A155438 A155439 A155440
• polyominoes; full list of sequences related to: (075) A155441 A155442 A155443 A155444 A155445 A155446 A155447 A155448 A156022 A156023 A156024 A156025
• polyominoes; full list of sequences related to: (076) A157608 A159866 A159867
• polyominoes; full list of sequences related to: (076) A182644 A182645 A182646
• polytans: A006074
• polytopal numbers: see polytopes, sequences related to polytopes, sequences related to :
• polytopes, regular: A060296, A053016, A063924, A063925, A063926, A063927, A063722
• polytopes, regular: A093478, A093479
• polytopes: A000943* and A060296* (n-dimensional), A005841* (4-dimensional)
• Poonen-Rubinstein paper on sequences formed by drawing all diagonals in regular polygon, sequences related to :
• Poonen-Rubinstein paper (1): A006533*, A006561*, A006600*, A007569*, A007678*
• Poonen-Rubinstein paper (2): A062361 A067151 A067152 A067153 A067154 A067155 A067156 A067157 A067158 A067159 A067162 A067163
• Poonen-Rubinstein paper (3): A067164 A067165 A067166 A067167 A067168 A067169 A091908 A092098 A092866 A092867 A108053
• Popes: A113515
• popular songs, see: songs, popular
• porisms: A002348
• Portuguese: A057696, A057697, A051385, A092752, A060248, A097897
• Portuguese: see also Index entries for sequences related to number of letters in n

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Pos

• posets , sequences related to :
• posets : A000112* (unlabeled), A001035* (labeled), A003425, A065066 (triangle)
• posets, antichains in: A006360-A006362, A056932-A056937, A056939-A056941
• posets, chains in: A007047, A038719-A038721
• posets, connected: A000608* (unlabeled), A001927* (labeled)
• posets, forbidden: A058260
• posets, graded: A001831 (labeled), A001833, A048194
• posets, increasing: A006455*
• posets, irreducible: A003431 (unlabeled), A046904-A046908
• posets, N-free: A003430*, A007453, A007454
• posets, reduced: A066302* (labeled), A066303, A066304* (unlabeled), A066305
• posets, series-parallel: A058349, A058350, A053554* (labeled)
• posets: see also A001827, A001828, A001829, A001830, A003404, A003405, A006251, A007555, A007776
• positive integers: A000027*
• Post functions, sequences related to :
• Post functions:: A002825, A002543, A002542, A002824, A002857, A002826, A001328, A001324, A001326, A001327, A001323, A001322, A001325, A001321
• postage stamp problem, sequences related to :
• postage stamp problem: (1) A084182 and A084193 (table of solutions)
• postage stamp problem: (2) rows: A014616, A001208, A001209, A001210, A001211, A053346, A053348
• postage stamp problem: (3) columns: A001212, A001213, A001214, A001215, A001216, A005342, A005343, A005344, A075060
• postage stamp problem: (4) See also: A006638, A004129, A004131, A004132, A006639, A006640
• Potts model, sequences related to :
• Potts model: (1) A001393 A002891 A002926 A007270 A007271 A007276 A007277 A007278 A057374 A057375 A057376 A057377
• Potts model: (2) A057378 A057379 A057380 A057381 A057382 A057383 A057384 A057385 A057386 A057387 A057388 A057389
• Potts model: (3) A057390 A057391 A057392 A057393 A057394 A057395 A057396 A057397 A057398 A057399 A057400 A057401
• Potts model: (4) A057402 A057403 A057404 A057405

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Pow

• power set, chains in: A007047
• power train: see powertrain
• power-sum numbers: A007603*
• powerful numbers , sequences related to :
• powerful numbers: A001694*, A007532*, A023052*, A061862*, A134703*, A005934, A036966
• powerful numbers: see also (1): A050240 A050241 A057521 A060859 A113839 A115645 A115651 A115676 A115686 A115687 A115689 A115691
• powers , sequences related to :
• powers (1):: A006899, A000079, A001357, A000244, A000290, A000302, A000351, A000400, A000420, A000578, A001018, A001019, A001020, A001021
• powers (2):: A000468, A001022, A001023, A001024, A001025, A001026, A001027, A001029, A001682, A000584, A001014, A001015, A001016, A001017
• powers of 10 written in base 8: A000468
• powers of 10: A011557*
• powers of 11: A001020
• powers of 12: A001021
• powers of 13: A001022
• powers of 14: A001023
• powers of 15: A001024
• powers of 16: A001025
• powers of 17: A001026
• powers of 18: A001027
• powers of 19: A001029
• powers of 20: A009964
• powers of 21: A009965
• powers of 22: A009966
• powers of 23: A009967
• powers of 24: A009968
• powers of 25: A009969
• powers of 26: A009970
• powers of 27: A009971
• powers of 28: A009972
• powers of 29: A009973
• powers of 2: A000079*
• powers of 2: see also (1): A000051 A000225 A000799 A000918 A001146 A001357 A001370 A002662 A004094 A004642 A004643 A004644
• powers of 2: see also (2): A004645 A004646 A004647 A004651 A004653 A004654 A004655 A005126 A006127 A006899 A007689 A030622
• powers of 30: A009974
• powers of 31: A009975
• powers of 32: A009976
• powers of 33: A009977
• powers of 34: A009978
• powers of 35: A009979
• powers of 36: A009980
• powers of 37: A009981
• powers of 38: A009982
• powers of 39: A009983
• powers of 3: A000244*
• powers of 3: see also (1): A002379, A002380, A001047 A000244 A004167 A004656 A004658 A004659 A004660 A004661 A004662
• powers of 3: see also (2): A004663 A004665 A004666 A004667 A004668 A004669 A006899
• powers of 40: A009984
• powers of 41: A009985
• powers of 42: A009986
• powers of 43: A009987
• powers of 44: A009988
• powers of 45: A009989
• powers of 46: A009990
• powers of 47: A009991
• powers of 48: A009992
• powers of 4: A000302*
• powers of 5: A000351*
• powers of 6: A000400*
• powers of 7: A000420*
• powers of 8: A001018*
• powers of 9: A001019*
• powers of a prime but not prime: A025475
• powers of e rounded up: A001671
• powers of Pi rounded upwards: A001673
• powers that be, A004143
• powers, not the difference of two: A074981*, A074980, A069586, A023057, A066510, A075823
• powers, perfect: A001597*, A007916
• powers, the difference of two: A075788, A075789, A075790, A075791
• powertrain function, sequences related to :
• powertrain function: A133500*, A133506, A133507
• powertrain function: fixed points: A135385
• powertrain function: high point in trajectory of n: A135381; records: A135382
• powertrain function: length of trajectory of n: A133501, A133502
• powertrain function: numbers that converge to 2592: A135384
• powertrain function: records for length of trajectory: A133503, A133508
• powertrain function: records: A133504, A133505

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Pra

• practical numbers: A005153*, A007620*
• Prague clock sequence: A028354*
• preferential arrangements: A000670*
• preorders: A006326, A006327, A006328, A006329
• previous prime , sequences related to :
• previous prime and next prime etc. for terms of various sequences: [NP = next prime, PP = previous prime, NPMPP = next prime - previous prime, nMPP = n - previous prime, NPMn = next prime - n, MIN = min of nMPP and NPMn]
• previous prime, next prime etc. .... .............................NP..........PP.......NPMPP....nMPP........NPMn ....MIN
• previous prime, next prime etc. for A000027 (n)... A007918 A007917 A013633 A049711 A013632 A051702
• previous prime, next prime etc. for A000079 (2^n). A014210 A014234 A058249 A013603 A013597 A059959
• previous prime, next prime etc. for A000142 (n!).. A037151 A006990 A054588 A033933 A033932 A056752
• previous prime, next prime etc. for A000290 (n^2). A007491 A053001 A058043 A056927 A053000 A060272
• previous prime, next prime etc. for A001747 (2p).. A058786 A059788 A060271 A059789 A059787 A059790
• previous prime, next prime etc. for A002110 (q(n)) A038710 A007014 A058044 A060270 A038711 A060269
• previous prime, next prime etc. for A003418 (LCM) A060357 A060358 A060359 A060360 A060361 A060362
• previous prime, next prime etc. for A005843 (2n).. A060264 A060308 A060267 A049653 A060266 A060268
• previous prime: version 1: A007917, version 2: A151799

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Pri

• prime divisor, greatest: A006530
• prime factorizations of important sequences: see factorizations of important sequences
• prime factors, sequences related to :
• prime factors: at least (1) 1: A000027 2: A002808 3: A033942 4: A033987 5: A046304
• prime factors: at least (2) 6: A046305 7: A046307 8: A046309 9: A046311 10: A046313
• prime factors: at most 1: A000040 2: A037143 3: A037144 4: A166718 5: A166719
• prime factors: exactly (1) 1: A000040 2: A001358 3: A014612 4: A014613 5: A014614
• prime factors: exactly (2) 6: A046306 7: A046308 8: A046310 9: A046312 10: A046314
• prime factors: exactly (3) 11: A069272 12: A069273 13: A069274 14: A069275 15: A069276
• prime factors: exactly (4) 16: A069277 17: A069278 18: A069279 19: A069280 20: A069281
• prime factors: number of A001222
• prime factors: table of: A078840
• prime numbers of measurement: A002048*, A002049*
• prime numbers: A000040*, A008578
• prime plus twice a square: A046903
• prime powers, sequences related to :
• prime powers: base: A025473, exponent: A025474
• prime powers: complement of: A024619
• prime powers: excluding primes: base: A025476, exponent: A025477
• prime powers: excluding primes: complement of: A085971
• prime powers: excluding primes: gaps: A053707
• prime powers: excluding primes: gaps: record: A167186, start: A167188, end: A167189
• prime powers: excluding primes: list of: A025475, previous: A167185, next: A167184
• prime powers: excluding primes: number of: A085501
• prime powers: gaps: A057820
• prime powers: gaps: record: A121492, start: A002540, end: A167236
• prime powers: list of: A000961, previous: A031218, next: A000015
• prime powers: number of: A065515
• prime pyramid: A051237*, A036440
• prime races, sequences related to :
• prime races: A007350, A007351, A007352, A007353, A007354, A007355, A096447, A096448, A096449, A096450, A096451, A096452, A096453, A096454, A096455, A098044
• prime signature, sequences related to :
• prime signature: A025487*
• prime signature: see also (1) A000688 A005361 A008480 A008683 A008966 A025488 A035206 A035341 A036035 A036041 A038538 A046660
• prime signature: see also (2) A046951 A050320 A050322 A050323 A050324 A050325 A050326 A050327 A050328 A050329 A050330 A050331
• prime signature: see also (3) A050332 A050333 A050334 A050335 A050336 A050337 A050338 A050339 A050340 A050341 A050345 A050346
• prime signature: see also (4) A050347 A050348 A050349 A050350 A050354 A050355 A050356 A050357 A050358 A050359 A050360 A050361
• prime signature: see also (5) A050362 A050363 A050364 A050370 A050371 A050372 A050373 A050374 A050375 A050377 A050378 A050379
• prime signature: see also (6) A050380 A050382 A051282 A051466 A051707 A052213 A052214 A052304 A052305 A052306 A056099 A056153
• prime triplets: A007529
• prime(2^n): A033844*, A018249, A051438, A051440, A051439
• prime(k^n): A033844, A038833, A119772, A055680, A058192, A058239, A119773, A119774, A006988, A058244, A058245, A058246, A119775, A119776, A119777
• prime(n) == +/-k (mod n): (1) A023143, A023144, A023145, A023146, A023147, A023148, A023149, A023150, A023151, A023152, A049204, A092044
• prime(n) == +/-k (mod n): (2) A092045, A092046, A092047, A092048, A092049, A092050, A092051, A092052
• prime, largest <=n: A007917
• prime, largest dividing n: A006530
• prime, smallest whose product of digits is (something): A088653 A088654 A089298 A089364 A089365 A089386 A089912
• prime, weakly: A050249
• PRIMEGAME: A007542, A007546, A007547
• PrimePi(x), number of primes <= x: A000720*
• primes , sequences related to :
• primes : A000040*
• primes gaps, see primes, gaps between
• primes in arithmetic progressions, see primes, in arithmetic progressions
• primes involving quasi-repdigits D(R)nE: (01) A049054,A088274,A088275,A102929,A102930,A102931,A102932,A102933,A102934,A102935,
• primes involving quasi-repdigits D(R)nE: (02) A102936,A102937,A102938,A102939,A102940,A102941,A102942,A102943,A102944,A102945,
• primes involving quasi-repdigits D(R)nE: (03) A102946,A102947,A081677,A101392,A102948,A102949,A102950,A102951,A102952,A102953,
• primes involving quasi-repdigits D(R)nE: (04) A102954,A102955,A098930,A099006,A102956,A098959,A102957,A098960,A102958,A102959,
• primes involving quasi-repdigits D(R)nE: (05) A102959,A102960,A102961,A102962,A102963,A102964,A056807,A100501,A101393,A102965,
• primes involving quasi-repdigits D(R)nE: (06) A102966,A102967,A102968,A102969,A102970,A102971,A102972,A102973,A102974,A102975,
• primes involving quasi-repdigits D(R)nE: (07) A102976,A102977,A102978,A102979,A102980,A101396,A101398,A056806,A101397,A101395,
• primes involving quasi-repdigits D(R)nE: (08) A101394,A102981,A102982,A102983,A102984,A102985,A102986,A102987,A102988,A102989,
• primes involving quasi-repdigits D(R)nE: (09) A102990,A102991,A102992,A102993,A102994,A099005,A099017,A102995,A102996,A102997,
• primes involving quasi-repdigits D(R)nE: (10) A102998,A102999,A103000,A103001,A103002,A103003,A096254,A103004,A103005,A103006,
• primes involving quasi-repdigits D(R)nE: (11) A103007,A103008,A103009,A103010,A103011,A103012,A103013,A103014,A103015,A103016,
• primes involving quasi-repdigits D(R)nE: (12) A103017,A103018,A103019,A103020,A103021,A103022,A103023,A103024,A103025,A056805,
• primes involving quasi-repdigits D(R)nE: (13) A103027,A103027,A103028,A103029,A103030,A097402,A103031,A103032,A103033,A103034,
• primes involving quasi-repdigits D(R)nE: (14) A103035,A103036,A103037,A103038,A103039,A103040,A103041,A103042,A103043,A103044,
• primes involving quasi-repdigits D(R)nE: (15) A103045,A103046,A103047,A103048,A103049,A056804,A097970,A097954,A103050,A103051,
• primes involving quasi-repdigits D(R)nE: (16) A103052,A103053,A103054,A103055,A103056,A103057,A103058,A103059,A103060,A103061,
• primes involving quasi-repdigits D(R)nE: (17) A103062,A103063,A103064,A103065,A103066,A103067,A103068,A099190,A103069,A103070,
• primes involving quasi-repdigits D(R)nE: (18) A103071,A103072,A103073,A103074,A103075,A103076,A103077,A103078,A103079,A103080,
• primes involving quasi-repdigits D(R)nE: (19) A103081,A103082,A103083,A103084,A103085,A103086,A103087,A103088,A103089,A103090,
• primes involving quasi-repdigits D(R)nE: (20) A103091,A103092,A056797,A096774,A100473,A103093,A103094,A103095,A103096,A103097,
• primes involving quasi-repdigits D(R)nE: (21) A103098,A103099,A103100,A103101,A103102,A103103,A103104,A103105,A103106,A103107,
• primes involving quasi-repdigits D(R)nE: (22) A103108,A103109
• primes involving repunits , sequences related to :
• primes involving repunits, X*10*repunits+Y: (1): A004023, A056654, A056655, A056659, A056660, A056656, A056677, A056678, A055520, A056680,
• primes involving repunits, X*10*repunits+Y: (2): A056681, A056661, A056682, A056683, A056684, A056685, A056686, A056687, A056658, A056657,
• primes involving repunits, X*10*repunits+Y: (3): A056688, A056689, A056693, A056664, A056694, A056695, A056663, A056696, A056662
• primes involving repunits, X*10^n+Y*repunits: (1): A004023, A056698, A089147, A002957, A056700, A056701, A056702, A056703, A056704,
• primes involving repunits, X*10^n+Y*repunits: (2): A056705, A056706, A056707, A056708, A056712, A056713, A056714, A056715, A056716,
• primes involving repunits, X*10^n+Y*repunits: (3): A056717, A056718, A056719, A056720, A056721, A056722, A056723, A056724, A056725,
• primes involving repunits, X*10^n+Y*repunits: (4): A056726, A056727
• primes involving repunits, X*repunits+-Y: (1): A004023, A097683, A097684, A097685, A084832, A096506, A099409, A099410, A055557, A099411,
• primes involving repunits, X*repunits+-Y: (2): A099412, A096845, A099413, A099414, A099415, A099416, A099417, A099418, A098088, A096507,
• primes involving repunits, X*repunits+-Y: (3): A099419, A099420, A098089, A099421, A099422, A096846, A096508, A095714, A089675
• primes of the form binomial(k*n, n) +- 1, k=2..6: A066699, A066726, A125221, A125220, A125241, A125240, A125243, A125242, A125245, A125244
• primes p such that x^k = 2 has a solution mod p, sequences related to :
• primes p such that x^k = 2 has a solution mod p, (**) means the divergence occurs beyond the last entry shown in the OEIS.
• primes p such that x^k = 2 has a solution mod p, k=02 to 09: A038873 (or A001132), A040028, A040098, A040159, A040992, A042966, A045315(**), A049596,
• primes p such that x^k = 2 has a solution mod p, k=10 to 19: A049542, A049543, A049544, A049545, A049546, A049547, A045315, A049549, A049550, A049551
• primes p such that x^k = 2 has a solution mod p, k=20 to 29: A049552, A049553, A049554, A049555, A049556, A049557, A049558, A049596(**), A049560, A049561
• primes p such that x^k = 2 has a solution mod p, k=30 to 39: A049562, A000040(**), A049564, A049565, A049566, A049567, A049568, A049569, A049570, A049571
• primes p such that x^k = 2 has a solution mod p, k=40 to 49: A049572, A049573, A049574, A058853, A049576, A049577, A049578, A000040(**), A049580, A042966(**)
• primes p such that x^k = 2 has a solution mod p, k=50 to 59: A049582, A049583, A049584, A049585, A049550(**), A049587, A049588, A049589, A049590, A000040(**)
• primes p such that x^k = 2 has a solution mod p, k=60 to 63: A049592, A000040(**), A049594, A049595
• primes such that the sum of the predecessor and successor primes is divisible by k: A112681, A112794, A112731, A112789, A112795, A112796, A112804, A112847, A112859, A113155, A113156, A113157, A113158
• primes that become a different prime under some mapping (1): A180533 A180535 A180537 A180560 A180541 A180543 A180552 A180581 A180561 A180530 A180526 A180527
• primes that become a different prime under some mapping (2): A180545 A180525 A180528 A180531 A180559 A180529 A180532 A180538 A180534 A180517 A180540 A180542
• primes that become a different prime under some mapping (3): A180518 A180548 A180547 A180519 A180546 A180549 A180550 A180553 A180520 A180555 A180557 A180521
• primes that become a different prime under some mapping (4): A180558 A180522 A180523 A180524 A180536 A180539 A180544 A180554 A180551 A180556
• primes with X as smallest positive primitive root: (1) A001122, A001123, A001124, A001125, A001126, A061323, A061324, A061325, A061326, A061327,
• primes with X as smallest positive primitive root: (2) A061328, A061329, A061330, A061331, A061332, A061333, A061334, A061335, A061730, A061731,
• primes with X as smallest positive primitive root: (3) A061732, A061733, A061734, A061735, A061736, A061737, A061738, A061739, A061740, A061741,
• primes with X as smallest positive primitive root: (4) A114657, A114658, A114659, A114660, A114661, A114662, A114663, A114664, A114665, A114666,
• primes with X as smallest positive primitive root: (5) A114667, A114668, A114669, A114670, A114671, A114672, A114673, A114674, A114675, A114676,
• primes with X as smallest positive primitive root: (6) A114677, A114678, A114679, A114680, A114681, A114682, A114683, A114684, A114685, A114686
• primes, <= n: A000720*
• primes, absolute: A003459*
• primes, almost: see almost primes
• primes, approximations to: A050503, A050502, A050504
• primes, arithmetic progressions of, see primes, in arithmetic progressions
• primes, automorphic: A046883, A046884
• primes, balanced: (index) A096693, A096705, A096706, A096707, A096708, A096697, A096709, A096695
• primes, balanced: (order) A006562, A082077, A082078, A082079, A096697, A096698, A096699, A096700, A096701, A096702,
• primes, balanced: (order) A096703, A096704, A081415, A082080, A126554, A096692, A127557, A096696, A160920, A090403
• primes, balanced: (order) A126556, A126558, A126555, A126557, A127364, A126559, A051795, A054342, A090403, A055206
• primes, balanced: A006562, A051795, A054342
• primes, Bertrand: A006992*, A051501
• Primes, by class number, A002148, A002142, A002146, A002147, A002149
• primes, by Erdos-Selfridge class n+: (0) A005113, A126433, A101253
• primes, by Erdos-Selfridge class n-: (0) A056637, A101231, A126805
• primes, by Erdos-Selfrigde class n+: (1) A005105, A005106, A005107, A005108, A081633, A081634
• primes, by Erdos-Selfrigde class n+: (2) A081635, A081636, A081637, A081638, A081639, A084071, A090468, A129474, A129475
• primes, by Erdos-Selfrigde class n-: (1) A005109, A005110, A005111, A005112, A081424, A081425
• primes, by Erdos-Selfrigde class n-: (2) A081426, A081427, A081428, A081429, A081430, A081640, A081641, A129248, A129249, A129250
• Primes, by number of digits, A003617, A006879, A006880, A003618
• primes, by order: (1) A007821, A049078, A049079, A049080, A049081, A058322, A058324, A058325, A058326, A058327, A058328, A093046
• primes, by order: (2) A000040, A006450, A038580, A049090, A049203, A049202, A057849, A057850, A057851, A057847, A058332, A093047
• Primes, by period length, A007615
• primes, by primitive root , sequences related to :
• primes, by primitive root: (01) A001122 A001123 A001124 A001125 A001126 A001913 A002230 A003147 A007348 A007349 A019334 A019335
• primes, by primitive root: (02) A019336 A019337 A019338 A019339 A019340 A019341 A019342 A019343 A019344 A019345 A019346 A019347
• primes, by primitive root: (03) A019348 A019349 A019350 A019351 A019352 A019353 A019354 A019355 A019356 A019357 A019358 A019359
• primes, by primitive root: (04) A019360 A019361 A019362 A019363 A019364 A019365 A019366 A019367 A019368 A019369 A019370 A019371
• primes, by primitive root: (05) A019372 A019373 A019374 A019375 A019376 A019377 A019378 A019379 A019380 A019381 A019382 A019383
• primes, by primitive root: (06) A019384 A019385 A019386 A019387 A019388 A019389 A019390 A019391 A019392 A019393 A019394 A019395
• primes, by primitive root: (07) A019396 A019397 A019398 A019399 A019400 A019401 A019402 A019403 A019404 A019405 A019406 A019407
• primes, by primitive root: (08) A019408 A019409 A019410 A019411 A019412 A019413 A019414 A019415 A019416 A019417 A019418 A019419
• primes, by primitive root: (09) A019420 A019421 A029932 A047933 A047934 A047935 A047936 A048975 A048976 A066529 A023048
• primes, by primitive root: (09) A105874-A105914
• Primes, chains of, A005603, A005602
• primes, characteristic function of: A010051
• Primes, compressed, A002036
• primes, concatenation of: A033308
• Primes, consecutive, A006549, A007700, A007513, A007529, A007530, A006489
• primes, cuban: A002407, A002648, A007645
• primes, Cullen: A005849*, A050920*
• primes, deceptive: A000864
• Primes, decompositions into, A002375, A002126, A001031, A002372, A007414
• primes, differences between: A001223*, A007921*, A030173*, A037201
• primes, dihedral calculator: A038136
• primes, dividing n: A001221*, A001222*, A006530*, A046660
• primes, doubled: A001747, A005602, A005603
• primes, duodecimal: A006687
• primes, Euclid-Pocklington: A053341*
• primes, Euclidean: A007996
• primes, even: A001747
• primes, factorial: see factorial primes
• primes, Fermat, generalized, see primes, generalized Fermat
• primes, Fermat, generalized: A056993* A005574 A000068 A006314 A006313 A006315 A006316 A056994 A056995 A057465 A057002 A088361 A088362
• primes, Fermat: A019434*, A050922
• primes, final digits of: A007652
• primes, fortunate, A005235
• primes, from Euclid's proof: A000945*, A000946*
• primes, gaps between , sequences related to :
• primes, gaps between, A001223*, A007921*, A030173*, A037201, A023200
• primes, gaps between, A001359, A006512, A077800, A001097, A049591, A124582-A124596
• primes, gaps between, A031924 A031925 A031926 A031927 A031928 A031929 A031930 A031931 A031932 A031933 A031934 A031935 A031936 A031937 A031938 A031939
• primes, gaps between, LCM of: A080374 A080375 A080376 A083273 A083552 A083551
• primes, gaps between, records for: A000101* (upper end), A002386* (lower end), A005250* (gaps)
• primes, gaps between, see also: A005669, A002540, A000230, A000232, A001549, A001632
• primes, generalized Fermat: A006686, A078902, A090874, A100266, A100267, A123646
• primes, generated by polynomials: see primes, produced by polynomials
• primes, Germain: see primes, Sophie Germain
• primes, good: A046869, A028388
• primes, half-quartan: A002646
• primes, happy: A035497
• primes, Higgs: A007459
• primes, home: A037274* (base 10), A048986* and A064795 (base 2)
• primes, Honaker: A033548
• primes, iccanobiF: A036797
• primes, in arithmetic progressions, sequences related to :
• primes, in arithmetic progressions: (01) Consider n-term arithmetic progressions (APs) of primes, i, i+d, i+2d, ..., i+(n-1)d. We can minimize (a) the first term i, (b) the common difference d, or (c) the last term, l=i+(n-1)d. This gives rise to 12 sequences since for each problem we can list the values of i, d, l, and we can list the progressions as the rows of a triangle:
• primes, in arithmetic progressions: (02) problem (a) i: A007918* (assuming k-tuple conjecture), d: A061558, l: A120302, triangle: A130791
• primes, in arithmetic progressions: (03) problem (b) i: A033189, d: A033188*, l: A113872, triangle: A133276
• primes, in arithmetic progressions: (04) problem (c) i: A113827, d: A093364, l: A005115*, triangle: A133277
• primes, in arithmetic progressions: (05) If we take the initial value to be the n-th prime (A000040) the the sequences are: d: A088430, l: A113834, triangle: A133278
• primes, in arithmetic progressions: (06) One may also ask for n consecutive primes in arithmetic progression: this gives A006560
• primes, in arithmetic progressions: (07) One may also consider n consecutive numbers in arithmetic progression having the same prime signature, and ask the same questions. This gives the following sequences:
• primes, in arithmetic progressions: (08) problem (a) i: A133279, d: A113461, l: A127781, triangle: A113460
• primes, in arithmetic progressions: (09) problem (b) i: A034173, d: the all-ones sequence A000012, l: A034174, triangle: A083785
• primes, in arithmetic progressions: (10) problem (c) i: A087308, d: A087310, l: A133280, triangle: A086786
• primes, in arithmetic progressions: (11) One may also ask for n consecutive numbers with the same prime signature: this gives sequences A034173, A034174, A083785 again. See also A087307
• primes, in arithmetic progressions: (12) See also A031217 A033168 A033290 A033446 A033447 A033448 A033449 A033450
• primes, in arithmetic progressions: (13) See also A033451 A035050 A035089 A035091 A035092 A035093 A035094 A035095 A035096 A047980 A047981 A047982
• primes, in arithmetic progressions: (14) See also A052239 A052242 A052243 A053647 A054203 A057324 A057325 A057326 A057327 A057328 A057329 A057330
• primes, in arithmetic progressions: (15) See also A057331 A057778 A057874 A058252 A058323 A058362 A059044
• primes, in arithmetic progressions: (16) Higher powers: A001912, A002496, A005574, A115104, A199307, A199364, A199365, A199366, A199367, A199368, A199369
• primes, in decimal expansion of Pi: A005042
• Primes, in intervals, A007491
• Primes, in number fields, A003631, A003625, A003628, A003630, A003632, A003626
• Primes, in residue classes, A003627, A002313, A003629, A002145, A007520, A002515, A007528, A002144, A007521, A002476, A001132, A007522, A007519
• Primes, in sequences, A003032, A003033, A002072
• Primes, in ternary, A001363
• primes, in various ranges , sequences related to :
• primes, in various ranges: (1) A003604 A006879 A006880 A007053 A007508 A033843 A035533 A036351 A036386 A039506 A039507
• primes, in various ranges: (2) A040014 A049035 A049040 A050251 A050258 A050986 A050987 A052130 A055206 A055552 A055683 A055728
• primes, in various ranges: (3) A055729 A055730 A055731 A055732 A055737 A055738 A057573 A057978 A058191 A058247 A058248 A060969
• primes, in various ranges: (4) A060970 A060971 A063501 A064151 A066265 A066873 A071973
• primes, in various ranges: (5) A091644 A091645 A091646 A091647 A091705 A091706 A091707 A091708 A091709 A091710
• primes, in various ranges: (6) A091634 A091635 A091636 A091637 A091638 A091639 A091640 A091641 A091642 A091643
• Primes, inert, A003631, A003625, A003628, A003630, A003632, A003626
• primes, irregular: A000928*, A061576*
• Primes, isolated, A007510
• primes, isolated: A039818
• Primes, largest, A006530, A006990, A007014, A002374, A003618
• primes, left-truncatable: see truncatable primes
• primes, lonely: A023186, A023187, A023188
• primes, long period: A006883*
• primes, Lucas numbers: A001606*, A005479*
• primes, Lucasian: A002515*
• primes, Mersenne: A000668* (primes of form 2^p-1), A000043* (p values)
• primes, Mills's: A051254*
• primes, minus a constant: A000040*, A014689, A014692, A040976
• primes, multiplicative and additive: A046713
• primes, multiplicative: A046703
• primes, next: A007918
• primes, number of less than k^n: A007053, A055729, A086680, A055730, A055731, A055732, A086681, A086682, A006880, A058247, A058248, A058191
• primes, number of less than n*10^k: (1) A000720*, A038801, A028505, A038812, A038813, A038814, A038815, A038816, A038817, A038818, A038819,
• primes, number of less than n*10^k: (2) A038820, A038821, A038822, A080123, A080124, A080125, A080126, A080127, A080128, A080129, A116356
• primes, octavan: A006686
• primes, of a particular form, number that are less than or equal to 10^n: A091115 A091116 A091117 A091119-A091129 A091099 A091098 A006880 A007508
• primes, of form k*n! +- 1: (1) A002981, A002982, A051915, A076133, A076679, A076134, A076680, A099350, A076681, A099351,
• primes, of form k*n! +- 1: (2) A076682, A180627, A076683, A180628, A180625, A180629, A180626, A180630, A126896, A180631
• primes, of form n! +- 1: A002981, A002982
• primes, of form x^2 + kxy + y^2: (1) A007519 A007645 A033212 A033215 A038872 A068228 A107008 A107008 A107145 A107152 A139492 A139493
• primes, of form x^2 + kxy + y^2: (2) A139493 A139494 A139495 A139496 A139497 A139498 A139499 A139500 A139501 A139502 A139503 A139504
• primes, of form x^2 + kxy + y^2: (3) A139505 A139506 A139507 A139508 A139509 A139510 A139511 A139512
• primes, of form x^2+27y^2: A014752, A040028
• primes, of form x^2+y^2: A002313*, A002331, A002330, A002144
• primes, order of: A049076, A007097
• primes, period of reciprocal of, see 1/p
• primes, Pierpont: A005109
• Primes, primitive roots of, A001918, A002233, A002199, A002231, A001122, A007348, A003147, A001913, A001123, A007349, A001124, A001125, A001126
• primes, produced by polynomials, etc.: A050268, A121887, A139414, A033189
• Primes, products of, A007467, A006881, A006094, A007304
• primes, products of: A000040 (1), A001358 (2), A014612 (3), A014613 (4)
• primes, pseudo: see pseudoprimes
• primes, quadratic form, discriminant -104: A107132, A033218
• primes, quadratic form, discriminant -108: A014752
• primes, quadratic form, discriminant -112: A107133, A107134
• primes, quadratic form, discriminant -116: A033219
• primes, quadratic form, discriminant -11: A056874, A106857
• primes, quadratic form, discriminant -120: A107135, A107136, A107137, A033220
• primes, quadratic form, discriminant -124: A033221
• primes, quadratic form, discriminant -128: A105389
• primes, quadratic form, discriminant -12: A002476
• primes, quadratic form, discriminant -132: A107138, A033222
• primes, quadratic form, discriminant -136: A107139, A033223
• primes, quadratic form, discriminant -140: A107140, A033224
• primes, quadratic form, discriminant -144: A107141, A107142
• primes, quadratic form, discriminant -148: A033225
• primes, quadratic form, discriminant -152: A107143, A033226
• primes, quadratic form, discriminant -156: A033227
• primes, quadratic form, discriminant -15: A033212, A106858, A106859, A106860, A106861
• primes, quadratic form, discriminant -160: A107144, A107145
• primes, quadratic form, discriminant -164: A033228
• primes, quadratic form, discriminant -168: A107146, A107147, A107148, A033229
• primes, quadratic form, discriminant -16: A002144, A002313
• primes, quadratic form, discriminant -172: A033230
• primes, quadratic form, discriminant -176: A107149, A107150
• primes, quadratic form, discriminant -180: A107151, A107152
• primes, quadratic form, discriminant -184: A107153, A033231
• primes, quadratic form, discriminant -188: A033232
• primes, quadratic form, discriminant -192: A107154
• primes, quadratic form, discriminant -196: A107155
• primes, quadratic form, discriminant -19: A106862, A106863
• primes, quadratic form, discriminant -200: A107156, A107157
• primes, quadratic form, discriminant -204: A107158, A033233
• primes, quadratic form, discriminant -208: A107159, A107160
• primes, quadratic form, discriminant -20: A033205, A106864, A106865
• primes, quadratic form, discriminant -212: A033234
• primes, quadratic form, discriminant -216: A107161, A107162
• primes, quadratic form, discriminant -220: A033235
• primes, quadratic form, discriminant -224: A107163, A107164
• primes, quadratic form, discriminant -228: A107165, A033236
• primes, quadratic form, discriminant -232: A107166, A033237
• primes, quadratic form, discriminant -236: A033238
• primes, quadratic form, discriminant -23: A106866, A106867, A106868, A106869
• primes, quadratic form, discriminant -240: A107167, A107168, A107169
• primes, quadratic form, discriminant -244: A033239
• primes, quadratic form, discriminant -248: A107170, A033240
• primes, quadratic form, discriminant -24: A033199, A084865
• primes, quadratic form, discriminant -256: A014754
• primes, quadratic form, discriminant -260: A107171, A033241
• primes, quadratic form, discriminant -264: A107172, A107173, A107174, A033242
• primes, quadratic form, discriminant -268: A033243
• primes, quadratic form, discriminant -272: A107175, A107176
• primes, quadratic form, discriminant -276: A107177, A033244
• primes, quadratic form, discriminant -27: A002476, A106870
• primes, quadratic form, discriminant -280: A107178, A107179, A107180, A033245
• primes, quadratic form, discriminant -284: A033246
• primes, quadratic form, discriminant -288: A107181
• primes, quadratic form, discriminant -28: A033207
• primes, quadratic form, discriminant -292: A033247
• primes, quadratic form, discriminant -296: A107182, A033248
• primes, quadratic form, discriminant -300: A107183, A107184
• primes, quadratic form, discriminant -304: A107185, A107186
• primes, quadratic form, discriminant -308: A107187, A033249
• primes, quadratic form, discriminant -312: A107188, A107189, A107190, A033250
• primes, quadratic form, discriminant -316: A033251
• primes, quadratic form, discriminant -31: A033221, A106871, A106872, A106873, A106874
• primes, quadratic form, discriminant -320: A107191, A107192
• primes, quadratic form, discriminant -324: A107193
• primes, quadratic form, discriminant -328: A107194, A033252
• primes, quadratic form, discriminant -32: A007519, A007520, A106875, A106876
• primes, quadratic form, discriminant -332: A033253
• primes, quadratic form, discriminant -336: A107195, A107196, A107197, A107198
• primes, quadratic form, discriminant -340: A107199, A033254
• primes, quadratic form, discriminant -344: A107200, A033255
• primes, quadratic form, discriminant -348: A033256
• primes, quadratic form, discriminant -352: A107201, A107202
• primes, quadratic form, discriminant -356: A033257
• primes, quadratic form, discriminant -35: A106877, A106878, A106879, A106880, A106881
• primes, quadratic form, discriminant -360: A107203, A107204, A107205, A107206
• primes, quadratic form, discriminant -364: A107207, A033258
• primes, quadratic form, discriminant -368: A107208, A107209
• primes, quadratic form, discriminant -36: A040117, A068228, A106882
• primes, quadratic form, discriminant -372: A107210, A033202
• primes, quadratic form, discriminant -376: A107211, A033204
• primes, quadratic form, discriminant -380: A033206
• primes, quadratic form, discriminant -384: A107212, A107213
• primes, quadratic form, discriminant -388: A033208
• primes, quadratic form, discriminant -392: A107214, A107215
• primes, quadratic form, discriminant -396: A107216, A107217
• primes, quadratic form, discriminant -39: A033227, A106883, A106884, A106885, A106886, A106887, A106888
• primes, quadratic form, discriminant -3: A007645
• primes, quadratic form, discriminant -400: A107218, A107219
• primes, quadratic form, discriminant -40: A033201, A106889
• primes, quadratic form, discriminant -43: A106890, A106891
• primes, quadratic form, discriminant -44: A033209, A106282, A106892, A106893
• primes, quadratic form, discriminant -47: A033232, A106894, A106895, A106896, A106897, A106898, A106899, A106900
• primes, quadratic form, discriminant -48: A068229
• primes, quadratic form, discriminant -4: A002313
• primes, quadratic form, discriminant -51: A106901, A106902, A106903, A106904
• primes, quadratic form, discriminant -52: A033210, A106905, A106906
• primes, quadratic form, discriminant -55: A033235, A106907, A106908, A106909, A106910, A106911, A106912, A106913
• primes, quadratic form, discriminant -56: A033211, A106914, A106915, A106916, A106917
• primes, quadratic form, discriminant -59: A106918, A106919, A106920, A106921, A106922
• primes, quadratic form, discriminant -63: A106923, A106924, A106925, A106926, A106927, A106928, A106929, A106930
• primes, quadratic form, discriminant -64: A007521, A106931
• primes, quadratic form, discriminant -67: A106932, A106933
• primes, quadratic form, discriminant -68: A033213, A106934, A106935, A106936, A106937, A106938
• primes, quadratic form, discriminant -71: A033246, A106939, A106940, A106941, A106942, A106943, A106944, A106945, A106946, A106947, A106948
• primes, quadratic form, discriminant -72: A106949, A106950
• primes, quadratic form, discriminant -75: A033212, A106951, A106952
• primes, quadratic form, discriminant -76: A033214, A106953, A106954, A106955
• primes, quadratic form, discriminant -79: A033251, A106956, A106957, A106958, A106959, A106960, A106961, A106962
• primes, quadratic form, discriminant -7: A045373, A106856
• primes, quadratic form, discriminant -80: A047650, A106963, A106964, A106965
• primes, quadratic form, discriminant -83: A106966, A106967, A106968, A106969, A106970
• primes, quadratic form, discriminant -84: A033215, A102271, A102273, A106971, A106972, A106973, A106974
• primes, quadratic form, discriminant -87: A033256, A106975, A106976, A106977, A106978, A106979, A106980, A106981, A106982, A106983
• primes, quadratic form, discriminant -88: A033216, A106984
• primes, quadratic form, discriminant -8: A033203
• primes, quadratic form, discriminant -91: A106985, A106986, A106987, A106988, A106989
• primes, quadratic form, discriminant -92: A033217
• primes, quadratic form, discriminant -95: A033206, A106990, A106991, A106992, A106993, A106994, A106995, A106996, A106997, A106998, A106999, A107000, A107001
• primes, quadratic form, discriminant -96: A107002, A107003, A107004, A107005, A107006, A107007, A107008
• primes, quadratic form, discriminant -99: A107009, A107010, A107011, A107012, A107013
• primes, quadratic form, discriminant 1020: A139512
• primes, quadratic form, discriminant 117: A139494
• primes, quadratic form, discriminant 140: A139495
• primes, quadratic form, discriminant 165: A139496
• primes, quadratic form, discriminant 21: A139492
• primes, quadratic form, discriminant 221: A139497
• primes, quadratic form, discriminant 285: A139498
• primes, quadratic form, discriminant 357: A139499
• primes, quadratic form, discriminant 396: A139500
• primes, quadratic form, discriminant 437: A139501
• primes, quadratic form, discriminant 480: A139502
• primes, quadratic form, discriminant 525: A139503
• primes, quadratic form, discriminant 572: A139504
• primes, quadratic form, discriminant 621: A139505
• primes, quadratic form, discriminant 672: A139506
• primes, quadratic form, discriminant 725: A139507
• primes, quadratic form, discriminant 77: A139493
• primes, quadratic form, discriminant 780: A139508
• primes, quadratic form, discriminant 837: A139509
• primes, quadratic form, discriminant 896: A139510
• primes, quadratic form, discriminant 957: A139511
• Primes, quadratic partitions of, A002973, A002972
• Primes, quadratic residues of, A002223, A002224, A002225, A002226, A002228, A002227
• primes, quartan: A002645
• primes, quintan: A002649, A002650
• primes, reciprocals of, periods: see 1/p
• primes, regular: A007703*
• Primes, represented by quadratic forms, A002496, A007645, A002383, A007490, A002327, A005473, A005471, A007635, A007639, A007637, A007641, A005846
• primes, repunit: A004022*, A004023*
• primes, right-truncatable: see truncatable primes
• primes, safe: A005385*, A051900, A051901, A051902
• primes, sextan: A002647
• primes, short period: A006559*
• Primes, single, A007510
• primes, Sophie Germain: A005384
• Primes, special sequences of, A001259, A001275
• Primes, square roots of, A000006
• primes, Stern: A042978
• primes, strobogrammatic: A007597, A018847
• primes, strong: A051634
• primes, sum of the first k^n primes, k=2,3,5,6,7,10: A099825, A099826, A113633, A113634, A113635, A099824
• Primes, sums of digits of, A007605
• Primes, sums of, A007610, A001414, A007504, A007468, A002373, A001043, A001172
• Primes, supersingular, A006962
• primes, that divide sum of all primes <= p: A007506, A024011, A028581, A028582
• Primes, to odd powers only, A002035
• primes, transformed by cellular automata: A093510 A093511 A093512 A093513 A093514 A093515 A093516 A093517
• primes, transforms of, A007442, A007444, A007447, A007441, A007445, A007296, A007446
• primes, truncatable: see truncatable primes
• primes, truncated: see truncatable primes
• primes, twin: A001359*, A014574*, A006512*, A001097*, A077800
• primes, undulating: A039944
• primes, various subsets in range 2^n,2^(n+1) , sequences related to :
• primes, various subsets in range 2^n,2^(n+1), (numbers in parentheses give the primes whose occurrences are being counted)
• primes, various subsets in range 2^n,2^(n+1): (1) A036378* (A000040), A095005 (A027697), A095006 (A027699), A095007 (A002144)
• primes, various subsets in range 2^n,2^(n+1): (2) A095008 (A002145), A095009 (A007519), A095010 (A007520), A095011 (A007521), A095012 (A007522), A095013 (A001132), A095014 (A003629)
• primes, various subsets in range 2^n,2^(n+1): (3) A095015 (A002476), A095016 (A007528), A095017 (A001359), A095018 (A066196), A095019 (A095071), A095020 (A095070), A095021 (A030430)
• primes, various subsets in range 2^n,2^(n+1): (4) A095022 (A030432), A095023 (A030431), A095024 (A030433), A095052 (A095072), A095053 (A095073), A095054 (A095074), A095055 (A095075)
• primes, various subsets in range 2^n,2^(n+1): (5) A095056 (A081091), A095057 (A095077), A095058 (A095078), A095059 (A095079), A095060 (A095080), A095061 (A095081), A095062 (A095082)
• primes, various subsets in range 2^n,2^(n+1): (6) A095063 (A095083), A095064 (A095084), A095065 (A095085), A095066 (A095086), A095067 (A095087), A095068 (A095088), A095069 (A095089)
• primes, various subsets in range 2^n,2^(n+1): (7) A095092 (A095102), A095093 (A095103), A095094 (A080114), A095095 (A080115)
• primes, weak: A051635
• primes, weakly prime numbers: A050249
• primes, which are average of their neighbors: A006562
• primes, whose reversal is a square, A007488
• primes, Wilson: A007540*
• Primes, with consecutive digits, A006510, A006055
• primes, with embedded primes (permutation): A039993, A080603, A080608.
• primes, with embedded primes (substring) (1): A033274, A034844, A039992, A039994, A039996, A039998, A045719, A079397, A092621, A092622,
• primes, with embedded primes (substring) (2): A092623, A092628, A109066, A134596, A137812, A152313, A152426, A152427, A155024, A168169,
• primes, with embedded primes (substring) (3): A178596, A178597, A179336, A179909, A179910, A179911, A179912, A179913, A179914, A179915,
• primes, with embedded primes (substring) (4): A179916, A179917, A179918, A179919, A179920, A179922, A179924*
• primes, with first digit 1 (or 2, 3, etc.): A045707, A045708, A045709, etc.
• Primes, with large least nonresidues, A002225, A002226, A002228, A002227
• Primes, with prime subscripts, A006450
• primes, Woodall: A002234*, A050918*
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, sequences related to :
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (01): A000043 A001770 A001771 A001772 A001773 A001774 A001775 A002235 A002236 A002237 A002238 A002240
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (02): A002242 A002253 A002254 A002256 A002258 A002259 A002261 A002269 A002274 A032353 A032356 A032359
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (03): A032360 A032361 A032362 A032363 A032364 A032365 A032366 A032367 A032368 A032370 A032371 A032372
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (04): A032373 A032374 A032375 A032376 A032377 A032379 A032380 A032381 A032382 A032383 A032384 A032385
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (05): A032386 A032387 A032388 A032389 A032390 A032391 A032392 A032393 A032394 A032395 A032396 A032397
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (06): A032398 A032399 A032400 A032401 A032402 A032403 A032404 A032405 A032406 A032407 A032408 A032409
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (07): A032410 A032411 A032412 A032413 A032414 A032415 A032416 A032417 A032418 A032419 A032420 A032421
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (08): A032422 A032423 A032424 A032425 A032453 A032454 A032455 A032456 A032457 A032458 A032459 A032460
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (09): A032461 A032462 A032464 A032465 A032466 A032467 A032468 A032469 A032470 A032471 A032472 A032473
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (10): A032474 A032475 A032476 A032477 A032478 A032479 A032480 A032481 A032482 A032483 A032484 A032485
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (11): A032486 A032487 A032488 A032489 A032490 A032491 A032492 A032493 A032494 A032495 A032496 A032497
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (12): A032498 A032499 A032500 A032501 A032502 A032503 A032504 A032507 A046758 A050537 A050538 A050539
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (13): A050540 A050541 A050543 A050544 A050545 A050546 A050547 A050549 A050550 A050551 A050552 A050553
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (14): A050554 A050555 A050556 A050557 A050558 A050559 A050560 A050561 A050562 A050563 A050564 A050565
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (15): A050566 A050567 A050568 A050569 A050570 A050571 A050572 A050573 A050574 A050575 A050576 A050577
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (16): A050578 A050579 A050580 A050581 A050582 A050583 A050584 A050585 A050586 A050587 A050588 A050589
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (17): A050590 A050591 A050592 A050593 A050594 A050595 A050596 A050597 A050598 A050599 A050616 A050617
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (18): A050618 A050619 A050830 A050831 A050832 A050833 A050834 A050835 A050836 A050837 A050838 A050839
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (19): A050840 A050841 A050842 A050843 A050844 A050845 A050846 A050847 A050848 A050849 A050850 A050851
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (20): A050852 A050853 A050854 A050855 A050856 A050857 A050858 A050859 A050860 A050861 A050862 A050863
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (21): A050864 A050865 A050866 A050867 A050868 A050869 A050877 A050878 A050879 A050880 A050881 A050882
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (22): A050883 A050884 A050885 A050886 A050887 A050888 A050889 A050890 A050891 A050892 A050893 A050894
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (23): A050895 A050896 A050897 A050898 A050899 A050900 A050901 A050902 A050903 A050904 A050905 A050906
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (24): A050907 A050908 A053345 A053346 A053348 A053349 A053350 A053351 A053352 A053353 A053354 A053355
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (25): A053356 A053357 A053358 A053359 A053360 A053361 A053362 A053363 A053364 A053365 A053366
• primes: values of n such that k*2^n-1 (or k*2^n+1) is prime, for k=1,3,5,7,... (26): A007505 A050522 A050523 A050524 A050525 A050526 A050527 A050528 A002255 A050413
• Primes:: A005361, A002200, A002038, A006093, A007445, A007296, A001259, A006450, A001275
• primeth recurrence: A007097*
• primitive (1):: A000020, A003050, A002233, A002199, A000019, A005992, A001578, A006246, A006245, A002589
• primitive (2):: A001122, A007348, A006248, A006991, A006039, A006036, A001913, A001123, A007627, A006576, A007349, A001124, A001125, A002975, A001126
• Primitive factors, A002185, A007138, A002184
• primitive roots, sequences related to :
• primitive roots, primes by: see primes by primitive root
• primitive roots: A060749*, A001918*, A002199, A002229, A002230, A002231, A029932, A071894
• primorial numbers, sequences related to :
• primorial numbers: A002110*, A034386*
• primorial primes: A005234*, A014545*, A018239*, A006794*, A057704*, A057705*
• principal character: A005368
• prism numbers: A005914, A005915, A005919, A005920

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Pro

• probability difference equation: A001949
• probability orderings: A005806
• problems to work on, see sequences that need extending
• problimes: A003066, A003067, A003068
• product of digits of n: A007954
• product of digits of primes, see: prime, smallest whose product of digits is (something)
• product of earlier terms, not, see: smallest number not a product of earlier terms
• product_{k >= 1} (1-x^k)^m , sequences from :
• product_{k >= 1} (1-x^k)^m (2): m=11..20: A010819 A000735 A010820 A010821 A010822 A000739 A010823 A010824 A010825 A010826
• product_{k >= 1} (1-x^k)^m (3): m=21..30: A010827 A010828 A010829 A000594 (the Ramanujan tau function), A010830 A010831 A010832 A010833 A010834 A010835
• product_{k >= 1} (1-x^k)^m (4): A010836 (m=31), A010837 (m=32), A010840 (m=40), A010838 (m=44), A010839 (m=48), A010841 (m=64)
• product_{k >= 1} (1-x^k)^m (5): m=-1..-10: A000041 (partition numbers), A000712 A000716 A023003 A023004 A023005 A023006 A023007 A023008 A023009
• product_{k >= 1} (1-x^k)^m (6): m=-11..-20: A023010 A005758 A023011 A023012 A023013 A023014 A023015 A023016 A023017 A023018
• product_{k >= 1} (1-x^k)^m (7): A023019 (m=-21), A023020 (m=-22), A023021 (m=-23), A006922 (m=-24), A082556 (m=-30), A082557 (m=-32), A082558 (m=-48), A082559 (m=-64)
• Production matrices
• Production matrices are mentioned in many entries in the OEIS. For definition see the article by Emeric Deutsch, Luca Ferrari and Simone Rinaldi, Production matrices and Riordan arrays
• profiles: A118131
• projective planes of order n: A001231*
• projective planes, maps on: A007137
• projective planes, permanent of: A000794
• promic numbers: see pronic numbers
• pronic numbers: A002378*
• Proth numbers: A016014*
• proton mass: A003677*
• proton-to-electron mass ratio: A005601*
• Prufer codes for trees: A056096, A056098

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Ps

• pseudo Q-numbers: A038135
• pseudo-bricks: A006291, A006293, A006293
• pseudo-Galois numbers: A028666 A028668 A028670 A028671 A028672 A028674 A028676 A028677 A028678 A028680 A028682 A028683 A028684 A028686 A028690
• pseudo-lines: A006247, A006248
• pseudo-powers to base 3: A016057, A016058
• pseudo-primes, see pseudoprimes
• pseudo-random numbers: sequences related to :
• pseudo-random numbers: (1) A061364 A096554 A096550 A096551 A096552 A096553 A096554 A096555 A096556 A096557 A096558 A096559
• pseudo-random numbers: (2) A096560 A096561 A084275 A084276 A084277
• pseudo-Smarandache numbers: A011772
• pseudo-squares: A002189*, A045535
• pseudo-wild numbers: see wild numbers
• pseudoperfect numbers: A005835*, A006036, A035480
• pseudoprimes , sequences related to :
• pseudoprimes (01): A001262 A001567 A005845 A005935 A005936 A005937 A005938 A005939 A006935 A006970 A007011 A007535
• pseudoprimes (02): A013998 A018187 A020136 A020137 A020138 A020139 A020140 A020141 A020142 A020143 A020144 A020145
• pseudoprimes (03): A020146 A020147 A020148 A020149 A020150 A020151 A020152 A020153 A020154 A020155 A020156 A020157
• pseudoprimes (04): A020158 A020159 A020160 A020161 A020162 A020163 A020164 A020165 A020166 A020167 A020168 A020169
• pseudoprimes (05): A020170 A020171 A020172 A020173 A020174 A020175 A020176 A020177 A020178 A020179 A020180 A020181
• pseudoprimes (06): A020182 A020183 A020184 A020185 A020186 A020187 A020188 A020189 A020190 A020191 A020192 A020193
• pseudoprimes (07): A020194 A020195 A020196 A020197 A020198 A020199 A020200 A020201 A020202 A020203 A020204 A020205
• pseudoprimes (08): A020206 A020207 A020208 A020209 A020210 A020211 A020212 A020213 A020214 A020215 A020216 A020217
• pseudoprimes (09): A020218 A020219 A020220 A020221 A020222 A020223 A020224 A020225 A020226 A020227 A020228 A020229
• pseudoprimes (10): A020230 A020231 A020232 A020233 A020234 A020235 A020236 A020237 A020238 A020239 A020240 A020241
• pseudoprimes (11): A020242 A020243 A020244 A020245 A020246 A020247 A020248 A020249 A020250 A020251 A020252 A020253
• pseudoprimes (12): A020254 A020255 A020256 A020257 A020258 A020259 A020260 A020261 A020262 A020263 A020264 A020265
• pseudoprimes (13): A020266 A020267 A020268 A020269 A020270 A020271 A020272 A020273 A020274 A020275 A020276 A020277
• pseudoprimes (14): A020278 A020279 A020280 A020281 A020282 A020283 A020284 A020285 A020286 A020287 A020288 A020289
• pseudoprimes (15): A020290 A020291 A020292 A020293 A020294 A020295 A020296 A020297 A020298 A020299 A020300 A020301
• pseudoprimes (16): A020302 A020303 A020304 A020305 A020306 A020307 A020308 A020309 A020310 A020311 A020312 A020313
• pseudoprimes (17): A020314 A020315 A020316 A020317 A020318 A020319 A020320 A020321 A020322 A020323 A020324 A020325
• pseudoprimes (18): A020326 A045535 A047713 A048950 A045535
• pseudoprimes to base 2, or Sarrus numbers: A001567*
• pseudoprimes, Carmichael numbers: A002997*
• pseudoprimes, Euler-Jacobi: A047713*
• pseudoprimes, Lucas: A005845
• pseudoprimes, Miller-Rabin primality test: A006945
• pseudoprimes, strong, to base 2: A001262*
• psi function: A001615
• puzzle sequences , sequences related to :
• puzzle sequences: A006567 A059999 A064438
• pyramidal numbers , sequences related to :
• pyramidal numbers (1): A000292* A000330 A001296 A002411 A002412 A002413 A002414
• pyramidal numbers (2): A002415 A005585 A005918 A007584 A007585 A007586 A007587
• pyramidal numbers (3): A014797 A014798 A014799 A014800 A014801 A014803
• pyramidal numbers (4): A015221 A015222 A015223 A015224 A015225 A015226 A039596
• Pythagoras' theorem:: A001652, A004253, A004254, A001653
• Pythagorean triples: sequences related to :
• Pythagorean triples: A006593 A009096 A010814 A098714 A099829 A099830 A099831 A099832 A099833
• Python examples, sequences related to :
• Python examples: A001047, A005150, A071531, A048927, A086638

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Qua

• q-factorials: see "factorial numbers, q-factorials"
• Q-graphs: A007169, A007170, A007171
• quadratic character, sequences with prescribed: A001986, A001988, A001990, A001992
• quadratic fields, sequences related to :
• quadratic fields, class number of sqrt(-n): A000924
• quadratic fields, discriminant of sqrt(-n): A006555, A006557
• quadratic fields, Euclidean: A003174* (real), A048981 (real and imaginary), A003246* (discriminants)
• quadratic fields, genera of: A003640, A003641, A003642, A003643
• quadratic fields, imaginary, by class numbers: 1: A003173; 2: A005847 and A014603; 3: A006203; 4: A046085 and A013658; 5: A046002; 6: A055109 and A046003; 7: A046004; 8: A055110 and A046005; 9: A046006; 10: A055111 and A046007
• quadratic fields, imaginary, by class numbers: 11-20: A046008-A046020
• quadratic fields, imaginary, by class numbers: PARI program for computing: A005847
• quadratic fields, real, by class numbers: 1: A003172*; 2: A029702*
• quadratic fields, real, discriminants: A037449
• quadratic fields, simple: A003172* (real), A003173* (imaginary), A061574 (both)
• quadratic fields, totally real of degree n: A006554*
• quadratic fields, unique factorization domains: A003172* (real), A003173* (imaginary), A061574 (both)
• quadratic forms , sequences related to :
• quadratic forms, binary:: A006375, A000003, A006371, A006374
• quadratic forms, genera of: A005141
• quadratic forms, minimal norm of: see minimal norm
• quadratic forms, one class per genus: A139827
• quadratic forms, populations of , sequences related to :
• quadratic forms, populations of: (1) A000024 A000049 A000050 A000067 A000072 A000074 A000075 A000076 A000077 A000205 A000286 A054150
• quadratic forms, populations of: (2) A054151 A054152 A054153 A054157 A054159 A054161 A054162 A054163 A054164 A054165 A054166 A054167
• quadratic forms, populations of: (3) A054169 A054171 A054173 A054175 A054176 A054177 A054178 A054179 A054180 A054182 A054184 A054186
• quadratic forms, populations of: (4) A054187 A054188 A054189 A054191 A054193 A054194 A000018 A000021 A000047 A000286 A068785
• quadratic forms, populations of: (5) A000690 A000691 A000692 A000693 A000694 A000709
• quadratic forms, ternary: A006376, A006377, A071136
• quadratic forms, unimodular, see: lattices, unimodular
• quadratic residues, A046071, A063987, A096008
• Quadrilaterals:: A002789, A005036, A002579, A002578
• quadrinomial coefficients: A001919 A005190 A005718 A005719 A005720 A005721 A005723 A005724 A005725 A005726 A008287*
• quandles: A181769*, A176077, A181771, A165200, A179010, A177886, A178432, A181770
• quarter-squares: A002620*
• quasi-amicable numbers: A003502*, A003503*, A005276*
• quasi-orders: A006870*
• quasigroups , sequences related to :
• quasigroups : A002860*, A057991*, A058171*
• quasigroups, asymmetric: A057994*, A057998, A058172, A058173, A058174*, A058176
• quasigroups, by idempotent: A058175*, A058176-A058178
• quasigroups, commutative: A057992*, A058172, A058177, A089925
• quasigroups, self-converse: A057993*, A057996, A058173, A058178
• quasigroups, with identity: A000315, A057771*, A057996, A057997*, A057998, A089925
• quaternary numbers: A007090
• quaternions, Hurwitz, prime: A055669, A055670, A055671, A055672

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Que

• Quebbemann 32-dimensional lattice: A002272*
• queens problem, sequences related to :
• queens problem: (1) A000170* A001366 A002562* A002563 A002564 A002565 A002566 A002567 A002568 A002968 A006317 A006717
• queens problem: (2) A007630 A007631 A007705 A019317 A019318 A024915 A025603 A025604 A025605 A025606 A030117 A032522
• queens problem: (3) A033148 A035005 A035291 A036464 A037009 A047659 A051566 A051567 A051568 A051569 A051570 A051571
• queens problem: (4) A051906 A053994 A054500 A054501 A054502
• question mark function, see Minkowski's question mark function
• Quet transform: A101387*, A100661, A100808
• quilt, Mrs. Perkins's: A005670

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Ra

• R(n), or n reversed: A004086
• r(n): A004018
• rabbits, sequences related to :
• rabbits, A000045*
• rabbits, dying: A000044 A023434 A023435 A023436 A023437 A023438 A023439 A023440 A023441 A023442
• races , sequences related to :
• races (1): A007350, A007351, A007352, A007353, A007354, A007355, A038025, A038026, A038691, A053402,
• races (2): A058376, A093180, A093181, A093182, A096452, A098033, A098044, A111744, A111745, A119498,
• races (3): A121573, A125149, A130911, A132189, A156549, A156709, A156749, A158819, A160764, A171717,
• races (4): A173026, A176028
• Ramanujan , sequences related to :
• Ramanujan approximation: A000691
• Ramanujan numbers tau(n): A000594*, A007659
• Ramanujan's Lost Notebook: sequences related to :
• Ramanujan's Lost Notebook: (1) A000025 A006304 A006305 A006306 A007325 A050203 A053250 A053251 A053252 A053253 A053254 A053255
• Ramanujan's Lost Notebook: (2) A053256 A053257 A053258 A053259 A053260 A053261 A053262 A053263 A053264 A053265 A053266 A053267
• Ramanujan's Lost Notebook: (3) A053268 A053269 A053270 A053271 A053272 A053273 A053274 A053281 A053282 A053283 A053284 A055101
• Ramanujan's Lost Notebook: (4) A055102 A055103 A055104
• Ramsey numbers, sequences related to :
• Ramsey numbers: A000789 A000791* A003323 A004401 A006474 A006672 A120414* A059442
• RAND Corporation list of a million random digits: A002205
• random numbers, sequences related to :
• random numbers: see random sequences
• random sequences: A002205*, A079365, A104183
• Raney numbers: A062993, A079508
• rapidly growing sequences: see: sequences which grow too rapidly to have their own entries
• rational numbers , sequences related to :
• rational numbers, listings of all: A020652/A020653, A038566/A038567, A038568/A038569, A038566/A020653, A113136/A113137
• rational numbers: see also the separate Index to fractions in OEIS
• Rational points on curves:: A005527, A005523, A005525, A005526
• rationals, enumerating: A002487(n)/A002487(n+1)*, A038566*/A038567*, A038568*/A038569*, A020650*/A020651*, A020652*/A020653*
• RATS: Reverse Add Then Sort, sequences related to :
• RATS: Reverse Add Then Sort: A004000*, A036839, A066710, A066711, A066713
• Raymond strings: A005303, A005304, A005305, A005306

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Rea

• reachable configurations on circles: A005787
• rebasing notation b[n]q: see A000695
• Recaman's sequence : sequences related to :
• Recaman's sequence : A005132*
• Recaman's sequence, addition steps: A057165
• Recaman's sequence, condensed version: A119632
• Recaman's sequence, heights: A064288 A064289* A064290 A064291 A064292 A064293 A064294
• Recaman's sequence, quotients and remainders: A065051 A065052
• Recaman's sequence, records for a(n)/n: A064621, A064622
• Recaman's sequence, segments in: A064492 A065038 A065053
• Recaman's sequence, simplified version: A008344 A046901
• Recaman's sequence, steps to hit n: A057167; A064227* and A064228* (records)
• Recaman's sequence, subtraction steps: A057166
• Recaman's sequence, transforms based on: A064365 A022831, A053461
• Recaman's sequence, two-dimensional versions: A066201 A066202
• Recaman's sequence, variations on: A008336 A064387 A064388 A064389 A063733 A065422 A066199 A066200 A066203 A066204
• Recaman's sequence: see also: A064284 A064301 A064369 A064568 A064569 A064970 A065053 A065054 A065055 A065056
• reciprocal of n, decimal expansion of: see 1/n
• reciprocals of primes: see 1/p
• record high values in a sequence {a(i)} occur at indices i such that a(i) > a(j) for all j < i
• rectangles, Latin, see Latin squares
• recurrence a(2^i+j) ..., sequences related to : recurrence a(2^i+j) = C*a(j) + D*a(j+1), a(0) = A, a(1) = B for following values of (A B C D): (0 1 1 1) A118977, (1 0 1 1) A151702, (1 1 1 1) A151570, (1 2 1 1) A151571, (0 1 1 2) A151572, (1 0 1 2) A151703, (1 1 1 2) A151573, (1 2 1 2) A151574, (0 1 2 1) A160552, (1 0 2 1) A151704, (1 1 2 1) A151568, (1 2 2 1) A151569, (0 1 2 2) A151705, (1 0 2 2) A151706, (1 1 2 2) A151707, (1 2 2 2) A151708
• recurrence, linear, constant coefficients, sequences related to :
• See Index to linear recurrence relations
• recurrences over rings: A005984
• recurrences, of the form a(n) = k*a(n - 1) +/- a(n - 2), sequences related to :
• recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) + a(n - 2): (1) A000032 A002203 A006497 A014448 A087130 A085447 A086902 A086594 A087798 A086927
• recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) + a(n - 2): (2) A001946 A086928 A088316 A090300 A090301 A090305 A090306 A090307 A090308 A090309
• recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) + a(n - 2): (3) A090310 A090313 A090314 A090316 A087281 A087287 A089772
• recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) - a(n - 2): (1) A057079 (and A087204) A007395 A005248 A003500 A003501 A003499 A056854 A086903 A056918 A087799
• recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) - a(n - 2): (2) A057076 A087800 A078363 A067902 A078365 A090727 A078367 A087215 A078369 A090728
• recurrences, of the form a(0) = 2; a(1) = k; a(n) = k*a(n - 1) - a(n - 2): (3) A090729 A090730 A090731 A090732 A090733 A090247 A090248 A090249 A090251 A087265 A065705 A089775
• reduced residue system: A070194
• reduced totient function psi: A002322*, A002174*, A002396*, A002616
• refactorable numbers: A033950*
• refactorable, strongly: A141586
• reflection coefficients: A007179
• regions , sequences related to :
• regions formed by lines in plane: A000124, A055503
• regions formed by spheres in space: A046127, A014206, A059173, A059174, A059250
• regions in regular polygon: see Poonen-Rubinstein paper
• regular connected grpahs, see graphs, regular connected
• regular n-gon with all diagonals drawn: see Poonen-Rubinstein paper
• regular polyhedra, see: polyhedra, regular
• regular polytopes, see: polytopes, regular
• regular primes: see primes, regular
• regular sequences: A003513
• Reisel numbers: see Riesel numbers

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Rel

• relations on n points: A001173* (unlabeled), A000595* (labeled)
• relations, sequences related to :
• relations, antisymmetric transitive: A091566
• relations, antisymmetric: A001174*
• Relations, connected, A002501, A002502
• Relations, dissimilarity, A006541
• Relations, reflexive, A000666, A000250
• relations, self-converse: A002500*
• relations, symmetric reflexive: A000250*
• relations, symmetric: A000666*, A070166
• relations, transitive: A006905* A091073*
• Relations, vacuously transitive, A003041
• relations, without symmetry: A030242*
• relations: see also A000665, A000957, A000663, A000662, A001377, A001374, A001376, A001375
• relatively prime pairs of numbers: see pairs of relatively prime numbers
• relatively prime triples of numbers: see triples of relatively prime numbers
• remove 2's from n: A000265
• remove squares!: A002734
• rencontres numbers, sequences related to :
• rencontres numbers, triangle of: A008290*
• rencontres numbers: A000166*
• rencontres numbers:: A000166*, A000387, A000449, A000475
• repdigit (repeated digit) numbers: A010785*
• repeating substrings: see doubling substrings
• repfigit or Keith numbers: A007629*, A06576*
• representation degeneracies, sequences related to :
• representation degeneracies:: A005290, A005292, A005291, A005297, A005299, A005293, A005304, A005294, A005300, A005298, A005303, A005305, A005306, A005295, A005296, A005301, A005302
• representations as sums , etc., sequences related to :
• representations as sums of increasing powers, A003315
• representations as sums of Lucas numbers, A003263
• representations as sums of squares, A006892, A002291, A002611, A002470, A002290, A002610, A002614, A002288, A002612, A002607, A002615, A002292, A002609, A002608, A002613
• representations as sums of triangular numbers, A006894, A006893
• representations of 0, A000980
• representations of 1, A002967
• representations of symmetric group, A000701
• repunit primes: see primes, repunit
• repunits: A002275*, A003020

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Res

• residue classes mod n: see "congruent to ..."
• residues, sequences related to :
• residues, cubic: A040028, A059898, A059914, A001133
• Residues:: A003276, A000445, A001134, A001135, A001136
• resistances: A048211, A051389, A046825, A005840
• Reverse Add Then Sort: see RATS
• Reverse and Add! , sequences related to :
• Reverse and Add!: A001127 (trajectory of 1); A033648 (trajectory of 3); A033670 (trajectory of 89); A006960 (trajectory of 196); A016016, A023109 (length of trajectory); A023108 (do not converge); A061562, A061563 (final term); A067030 (range)
• Reverse and Add!: in other bases: A058042, A061561
• Reverse and Add!: see also ( 1) A015976 A015977 A015979 A015980 A015982 A015984 A015986 A015988 A015990 A015991 A015992 A015993
• Reverse and Add!: see also ( 2) A033649 A033650 A033651 A033652 A033653 A033654 A033655 A033656 A033657 A033658 A033659 A033660
• Reverse and Add!: see also ( 3) A033661 A033665 A033671 A033672 A033673 A033674 A033675 A056964 A062128 A062130 A063048
• Reverse and Add!: see also ( 4) A063049 A063050 A063051 A063052 A063053 A063054 A063055 A063056 A063057 A063058 A063059 A063060
• Reverse and Add!: see also ( 5) A063061 A063062 A063063 A063064 A063065 A063433 A063434 A063435 A065001 A065198 A065199 A065206
• Reverse and Add!: see also ( 6) A065207 A065208 A065209 A065210 A065211 A065212 A065213 A065214 A065215 A065216 A065217 A065318
• Reverse and Add!: see also ( 7) A065319 A065320 A065321 A065322 A065323 A065324 A065325 A065326 A065327 A066054 A066055 A066056
• Reverse and Add!: see also ( 8) A066057 A066058 A066059 A066122 A066123 A066124 A066125 A066126 A066127 A066128 A066129 A066130
• Reverse and Add!: see also ( 9) A066131 A066132 A066133 A066144 A066145 A066450 A067284 A067285 A067286 A067287 A067288 A067737
• Reverse and Add!: see also (10) A068798 A070001 A070742 A070743 A070744 A070788 A070789 A070790 A070791 A070792 A070793 A070794
• reversion of series , sequences related to :
• reversion of series: (01) A001002 A002212 A005149 A005264 A005797 A006147 A006195 A006351 A007296 A007297 A007303 A007311
• reversion of series: (02) A007312 A007313 A007314 A007315 A007316 A007440 A007852 A011270 A014103 A033321 A033454 A037247
• reversion of series: (03) A049122 A049123 A049124 A049125 A049126 A049127 A049128 A049129 A049130 A049131 A049132 A049133
• reversion of series: (04) A049134 A049135 A049136 A049137 A049138 A049139 A049140 A049141 A049142 A049143 A049144 A049145
• reversion of series: (05) A049146 A049147 A049148 A049171 A049172 A049173 A049174 A049175 A049176 A049177 A049178 A049179
• reversion of series: (06) A049180 A049181 A049182 A049183 A049184 A049185 A049186 A049187 A049188 A049189 A050385 A050386
• reversion of series: (07) A050387 A050388 A050389 A050390 A050391 A050392 A050393 A050394 A050395 A050396 A050397 A050398
• reversion of series: (08) A053550 A053552 A053554 A063018 A063019 A063020 A063021 A063022 A063023 A063024 A063025 A063026
• reversion of series: (09) A063027 A063028 A063029 A063030 A063031 A063032 A063033 A063034 A066396 A066397 A066398 A066399
• reversion of series: using gfun: see A053552
• REVERT transform: see reversion of series
• rhombic dodecahedral numbers: A005917*, A046142
• rhyme schemes: A005000, A005001, A005002, A005003
• Riemann hypothesis, sequences related to :
• Riemann hypothesis, sequences equivalent to: A057641*, A079526*, A057640, A058209*, A058210
• Riemann hypothesis, sequences related to: A002410, A079722, A079723, A079724, A067698
• Riemann zeta function: see zeta function
• Riesel numbers, sequences related to :
• Riesel numbers: A003261
• Riesel problem: A050412*, A052333*, A040081*, A038699*
• riffle shuffling: see shuffling
• rings (in graph-theoretic sense): A002861, A002862
• rings , sequences related to :
• rings, commutative: A037289*
• rings, enumeration of: the main entries are A027623*, A037291*, A037289*, A038538*
• rings, nonassociative: A037292*
• rings, nonisomorphic and nonantiisomorphic: A038036
• rings, self-converse: A037289
• rings, semisimple: A038538*
• rings, with unit: A037291*
• rings: A027623* (need not contain 1, need not be commutative)
• Riordan arrays , sequences related to :
• Riordan arrays: (01) A000111 A001764 A004070 A008288 A008951 A011782 A026729 A030111 A030528 A033184 A037027 A038207 A039598 A039599 A039683 A046521 A046854 A049020 A049403 A050155
• Riordan arrays: (02) A051141 A052179 A053121 A053122 A054335 A054456 A055248 A056242 A056857 A059110 A059260 A059738 A060821 A061554 A062110 A063967 A064189 A065600 A067147 A071919
• Riordan arrays: (03) A072405 A073370 A078812 A078937 A078938 A079513 A080245 A081577 A081578 A081580 A084938 A085478 A090299 A091186 A091597 A091698 A092392 A093375 A094527 A094531
• Riordan arrays: (04) A094587 A094816 A097609 A097805 A097806 A097807 A097808 A098593 A098599 A098615 A099039 A099040 A099089 A099091 A099092 A099093 A099095 A099096 A099097 A099174
• Riordan arrays: (05) A099325 A099326 A099567 A099569 A100218 A101603 A102587 A103136 A103141 A103316 A103778 A104259 A104505 A104551 A104578 A104579 A104580 A104597 A104698 A104709
• Riordan arrays: (06) A104762 A104975 A105438 A105522 A105809 A105810 A106180 A106187 A106190 A106195 A106268 A106270 A106478 A106509 A106513 A106516 A106522 A106566 A106828 A107026
• Riordan arrays: (07) A107027 A107030 A107065 A107238 A108044 A108045 A109244 A109246 A109264 A109267 A109449 A109466 A109954 A109956 A109960 A109962 A109970 A109971 A109980 A110162
• Riordan arrays: (08) A110165 A110168 A110171 A110271 A110291 A110292 A110438 A110439 A110440 A110441 A110506 A110509 A110510 A110511 A110515 A110517 A110518 A110519 A110522 A110813
• Riordan arrays: (09) A110814 A111062 A111106 A111146 A111373 A111418 A111526 A111527 A111577 A111594 A111596 A111806 A111959 A111960 A111963 A111965 A112227 A112465 A112466 A112467
• Riordan arrays: (10) A112468 A112475 A112477 A112517 A112519 A112552 A112554 A112555 A112743 A112883 A112899 A112971 A112973 A113129 A113143 A113187 A113214 A113310 A113313 A113408
• Riordan arrays: (11) A113413 A113678 A113680 A113953 A113955 A114121 A114123 A114164 A114188 A114189 A114192 A114193 A114195 A114283 A114284 A114422 A115356 A115358 A115359 A115361
• Riordan arrays: (12) A115363 A115450 A115452 A115512 A115524 A115633 A115713 A115990 A116088 A116089 A116382 A116385 A116389 A116392 A116395 A116412 A116414 A116948 A116949 A117178
• Riordan arrays: (13) A117179 A117184 A117185 A117198 A117316 A117352 A117354 A117355 A117362 A117372 A117375 A117377 A117380 A117567 A117568 A118384 A119301 A119302 A119304 A119305
• Riordan arrays: (14) A119467 A119879 A120616 A121574 A121575 A121576 A122016 A122431 A122432 A122433 A122438 A122440 A122538 A122542 A122832 A122833 A122848 A122850 A122896 A122897
• Riordan arrays: (15) A122908 A122917 A122919 A123486 A123562 A123876 A123878 A123967 A124234 A124237 A124279 A124304 A124305 A124323 A124341 A124369 A124377 A124392 A124394 A124448
• Riordan arrays: (16) A124790 A124816 A124819 A125171 A125177 A125690 A125692 A125693 A125694 A125906 A126030 A126075 A127501 A127543 A127631 A127893 A127894 A127895 A127898 A128174
• Riordan arrays: (17) A128414 A128417 A128514 A128899 A128908 A129267 A129652 A129684 A129685 A129818 A130777 A131222 A131758 A132964 A133367 A134388 A135552 A136688 A138175 A139375
• Riordan arrays: (18) A139377 A141244 A141245 A141342 A141343 A141344 A143679 A143681 A143683 A143685 A146314 A147308 A147309 A147311 A147312 A147703 A147720 A147721 A147723 A147724
• Riordan arrays: (19) A147746 A147747 A147750 A151282 A152148 A152150 A152151 A154556 A154602 A154929 A154930 A154948 A154950 A155112 A155161 A155761 A155788 A155862 A155866 A155867
• Riordan arrays: (20) A155887 A157002 A157003 A157004 A158454 A158687 A158909 A159764 A159830 A159834 A159853 A159854 A159855 A159965 A159971 A160905 A161009 A161556 A162717
• Riordan arrays: see also the article by Emeric Deutsch, Luca Ferrari and Simone Rinaldi, Production matrices and Riordan arrays
• Riordan numbers: A005043

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Ro

• Robbins , sequences related to :
• Robbins constant: A073012
• Robbins numbers: A005130*
• Robbins triangle: A048601*, A029656/A029638, A102610
• Robinson's constant: A001205*
• Rogers-Ramanjuan , sequences related to :
• Rogers-Ramanjuan continued fraction: A050203
• Rogers-Ramanujan identities: A003114*, A003106*, A006141
• Roman numerals for n: A006968*
• Roman numerals: see also (1) A002904 A002963 A002964 A003587 A003588 A014287 A036741 A036741 A036742 A036743 A036746 A036786
• Roman numerals: see also Index entries for sequences related to number of letters in n
• Ron's sequence: A006255, A066400, A066401
• rook tours, sequences related to :
• rook tours: A003763*, A096121, A006071
• Rooks:: A000903, A006071
• rooted trees , sequences related to :
• rooted trees , A000081* (unlabeled), A000169* (labeled)
• rooted trees, (2,3), A001005
• rooted trees, 1-2, A006893
• rooted trees, 2-ary, see: rooted trees, binary
• rooted trees, 2-colored, A000151, A004113, A005753, A029856, A031148, A032306, A038049, A038053, A038055*, A038057*, A038075, A038077, A052316
• rooted trees, 3-ary, see: rooted trees, ternary
• rooted trees, 3-colored, A006964, A029857, A038050, A038059*, A038061*, A038076, A038079, A047891
• rooted trees, 4-ary, A019498, A036606, A036609-A036614, A036627-A036633
• rooted trees, 4-colored, A052763
• rooted trees, 5-ary, A019499, A036607, A036615-A036620, A036634-A035540
• rooted trees, 5-colored, A052788
• rooted trees, 6-ary, A019500, A036608, A036621-A036626, A036641-A036647
• rooted trees, 7-ary, A019501
• rooted trees, achiral, A003240, A003241*, A005627, A003237
• rooted trees, asymmetric (1): A004111*, A005355, A005754, A007560, A022553, A031148, A032101-A032105, A035353, A038075, A038076
• rooted trees, asymmetric (2): A038077, A038079, A038081-A038093, A048829-A048832, A052301, A052325, A055327-A055333
• rooted trees, AVL, A006265, A029758, A036662, A134306, A143897
• rooted trees, B-trees, A014535, A037026
• rooted trees, binary (1): A000108 (Catalan numbers), A000671, A001190* (Wedderburn-Etherington numbers), A001699, A002572, A002844, A004019*
• rooted trees, binary (2): A005588, A006223, A006365, A006679, A014167, A014168, A014169, A014171, A019275, A035010, A035102, A036602
• rooted trees, binary (3): A036587, A036588, A036589, A036590, A036591, A036592, A036593, A036594, A036595, A036596, A036597, A036589
• rooted trees, binary (4): A036599, A036600, A036601, A036656-A036658, A036661, A036774*, A063895
• rooted trees, boron, A000671*
• rooted trees, by generators, A007151, A108521*, A108522-A108525
• rooted trees, by internal nodes, A108530
• rooted trees, carbon, A000678
• rooted trees, chiral planted, A005628
• rooted trees, codes for, A005517, A005518
• rooted trees, composite binary, A035102
• rooted trees, constant, A051491, A051492, A051496
• rooted trees, directed, A006964*
• rooted trees, evolutionary, A007151
• rooted trees, fixed points in, A005200*, A005202
• rooted trees, game, A048829, A048830, A048831, A048832
• rooted trees, genealogical, A003686
• rooted trees, Greg, A005264*, A048160, A052300*, A052301
• rooted trees, height 02, A000041 (partition numbers), A000110 (Bell numbers), A000551*
• rooted trees, height 03, A000235*, A000258, A000552*, A001383, A001970, A036371, A036443, A036627, A036634, A036641, A038082, A048808, A050351
• rooted trees, height 04 (1): A000299*, A000307, A000553*, A001384, A007713, A036372, A036419, A036587, A036593, A036609, A036615
• rooted trees, height 04 (2): A036621, A036628, A036635, A036642, A038084, A038088, A048809, A050352
• rooted trees, height 05 (1): A000342*, A000357, A001385, A007714, A036588, A036373, A036420, A036594, A036610, A036616, A036622
• rooted trees, height 05 (2): A036629, A036636, A036643, A036662, A038085, A038089, A048810, A050353
• rooted trees, height 06 (1): A000393*, A000405, A034823, A036589, A036374, A036421, A036595, A036611, A036617, A036623, A036630
• rooted trees, height 06 (2): A036637, A036644, A038085, A038090, A048811
• rooted trees, height 07 (1): A000418*, A001669, A034824, A036590, A036375, A036422, A036596, A036612, A036618, A036624, A036631
• rooted trees, height 07 (2): A036638, A036645, A038086, A038091, A048812
• rooted trees, height 08 (1): A000429*, A034825, A036376, A036423, A036591, A036597, A036613, A036619, A036625, A036632, A036639
• rooted trees, height 08 (2): A036646, A038087, A038092, A048813
• rooted trees, height 09, A034826, A036647, A036424, A036592, A036598, A036614, A036620, A036626, A036633, A048814
• rooted trees, height 10, A036425, A036599, A048815
• rooted trees, height 11, A036426, A036600
• rooted trees, height 12, A036427, A036601
• rooted trees, height of (1): A001699, A001853, A001854, A001864, A002658, A003686, A005588, A006223, A006893, A007715, A036370
• rooted trees, height of (2): A036437, A036606, A036607, A036608, A038081, A038093, A048816, A072638
• rooted trees, Husimi, A000237, A035082*, A035086, A035087*, A035351, A035352, A035353, A035357
• rooted trees, hybrid binary, A007863, A011270, A011272, A011274
• rooted trees, identity: see rooted trees, asymmetric
• rooted trees, increasing: A008292
• rooted trees, involution: A032035, A091481*, A091486*, A091488
• rooted trees, lableling (Goebel), A061773, A061775, A005517, A005518
• rooted trees, leaves, (cont): A055897
• rooted trees, leaves, A003227, A008292, A055277*, A055278-A055289, A055302*, A055303-A055313, A055327-A055333
• rooted trees, linear, see rooted trees, planar, planted
• rooted trees, M-type, A006959, A052315
• rooted trees, matched, A005750, A005753, A005754
• rooted trees, nodes, A055544
• rooted trees, noncrossing, A006629, A023053, A030980, A030981, A030982, A030983, A045721, A045722, A045737, A045738
• rooted trees, normalized total height, A000435, A001863
• rooted trees, of subsets, A005804, A005172, A036249*, A048802*
• rooted trees, ordered, see: rooted trees, planar
• rooted trees, oriented, A000151*, A005750, A005753, A005754
• rooted trees, partially labeled, A000107, A000444, A000524, A000525
• rooted trees, permutation, A005355, A050383*
• rooted trees, phylogenetic, A000311, A005804, A006677, A006678, A006679
• rooted trees, planar, A000758, A000957, A000958, A001895, A003239*, A007852-A007860, A014300, A014301, A022553, A032010, A032028, A033297, A047891
• rooted trees, planar, A106361, A106362
• rooted trees, planar, dyslexic (1): A032047, A032048, A032065, A032066, A032068, A032101-A032105, A032119, A032128, A032129*
• rooted trees, planar, dyslexic (2): A032132, A032133, A038035*
• rooted trees, planar, planted, A000108* (Catalan numbers), A032009, A032027, A032030, A050351, A050352, A050353, A014486
• rooted trees, plane, encodings of , sequences related to :
• rooted trees, plane, encodings of, (For the subsets of A014486 the sequence in parentheses gives the positions therein.)
• rooted trees, plane, encoded as totally balanced binary strings: (01) A014486*, A057517 (A057518), A057119 (A057120), A057122 (A057123), A057547 (A057548), A061855 (A061856)
• rooted trees, plane, encoded as totally balanced binary strings: (02) A075165 (A075161), A080069 (A080068), A080118 (A080119), A080263 (A080265), A080293 (A080295), A080299 (A080298)
• rooted trees, plane, encoded as totally balanced binary strings: (03) A080973 (A080975), A080971 (A080970), A080981 (A080980), A081292 (A081291), A083932 (A083934), A083936 (A083930),
• rooted trees, plane, encoded as totally balanced binary strings: (04) A083937 (A072795), A083939 (A083938), A083941 (A083940), A002542 (A083942), A084107 (A084108), A085224 (A085223)
• rooted trees, planted, A003227, A005202, A006677, A006678, A006679, A006894, A007151
• rooted trees, pointed, A000107*, A000243, A000312*, A008295
• rooted trees, powers of enumerator, A000106, A000242, A000300, A000343, A000395, A000439, A000529
• rooted trees, prime binary, A035010
• rooted trees, projective plane: A006079, A006080*, A066317
• rooted trees, quartic planted, A000598
• rooted trees, red-black, A001131, A001137, A001138
• rooted trees, search, A007077 , A007078, A019497-A019501
• rooted trees, series-reduced planted (1): A000669, A001678*, A001859, A001860, A031148, A032030, A032068, A032105, A032119
• rooted trees, series-reduced planted (2): A032132, A032133, A050381
• rooted trees, series-reduced, A000311*, A001679*, A005804, A005805, A006677, A058735, A058737, A059123*, A007827*
• rooted trees, spanning, A030438
• rooted trees, steric planted, A000625, A000628
• rooted trees, symmetries in planted, A003609, A003611, A003613, A003615, A007135, A007136
• rooted trees, ternary, A000598*, A002658, A006894, A019497, A036370-A036376, A036419-A036427, A036437, A036443
• rooted trees, triangle, A008295, A033185, A034781, A036370, A036437, A036602, A036606, A036607, A036608
• rooted trees, trimmed, A002955*, A052318*, A052319
• rooted trees, unary-binary, A002658, A029766*, A072638
• rooted trees, with a forbidden limb, A002955, A014267, A014276
• rooted trees, with(out) a primary branch, A027415, A027416
• rooted trees: see also (1): A000226, A001257, A003120, A003238, A005373, A006850, A006871, A006900, A006930, A007439, A007562,
• rooted trees: see also (2): A027852, A029855, A032305, A036765-A036778, A001257, A050395, A050396, A074045
• rotation distance: A005152
• rough numbers: see smooth numbers
• row sums of a triangle, Maple code for: A151615
• Rowland's prime-generating sequence: A106108*, A132199*, A137613, A191304
• Rowland's prime-generating sequence: see also A084662, A084663, A134734, A134736, A134743, A134744, A135506, A139759, A141537, A166944, A166945, A167168, A167170, A167195, A167197, A167493, A167494, A167495, A168143, A168144
• royal paths in a lattice: A006318*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Ru

• Rudin-Shapiro word: A020985*, A020987*, A005943
• Rule 30: see under cellular automata, Rule 30
• ruler and compass: A003401
• ruler function: A001511
• rulers, complete: see perfect rulers
• rulers, Golomb: see Golomb rulers
• rulers, optimal: see perfect rulers
• rulers, perfect: see perfect rulers
• runs in binary expansion: A005811*
• runs, lengths of: A000002
• Russian: see also Index entries for sequences related to number of letters in n
• Ruth-Aaron numbers: A006145, A006146, A039752, A039753, A054738
• r_2(n): A004018

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Sa

• safe primes: see primes, safe
• SAGE program: see A000040, A000045 and many other entries for examples
• Salie numbers: A000795*, A005647*
• Sally sequence: A006346
• Sam Loyd's 15-Puzzle: see Fifteen Puzzle
• same upside down: A000787
• Sarrus numbers: see pseudoprimes
• say what you see , sequences related to :
• say what you see (applied to n): A045918*, A047842*, A047843*
• say what you see (applied to previous term): A005150*, A005151*, A010861, A001388, A063850
• Scheme (programming language): see under Index entries for the sequences induced by list functions of Lisp
• Schroder is spelled Schroeder in the OEIS
• Schroeder , sequences related to :
• Schroeder numbers: A006318* A001003*
• Schroeder's 1st problem: A000108*
• Schroeder's 2nd problem: A001003*
• Schroeder's 3rd problem: A001147*
• Schroeder's 4th problem: A000311*
• Schr\"{o}der is spelled Schroeder in the OEIS
• Scott, Dana, sequences: A048736*
• Scrabble: A080993, A080994, A113172, A124015

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Se

• sec(x), Taylor series for: A046976*/A046977*, A000364*/A000142*
• secant numbers: A000364*
• secant-tangent numbers: A000111*
• Second moment:: A006733, A006741, A006737
• Secret Santa: A102262/A102263
• segmented numbers: A002048*
• self numbers, sequences related to :
• self numbers:: A003052*, A003219, A006378
• Self-contained numbers:: A005184
• self-describing numbers, sequences related to :
• self-describing numbers: A104784, A108810, A059504, A109775, A109776
• self-dual, sequences related to :
• self-dual:: A005137, A003179, A007147, A003178, A001532, A002080, A001206, A006688, A002841, A004104, A001531, A003184, A002077, A004107
• self-generating sequences, sequences related to :
• self-generating sequences:: A005041, A007538, A003160, A003045, A003044, A005243, A001149, A005244, A005242, A001856, A003145, A003144, A003157, A003156, A003146
• semigroups , sequences related to :
• semigroups : A001423*, A023814*, A027851*, A079175
• semigroups, asymmetric: A058104*, A058105, A058106, A058107*, A058113-A058115, A058168-A058170
• semigroups, by idempotents: A002786, A002787, A002788, A005591, A006966, A058108*, A058109-A058122, A058123*, A058166*, A058167-A058170
• semigroups, commutative: A001426*, A006966, A023815*, A058105, A058116, A058117, A058167, A058168, A079201
• semigroups, idempotent: A002788*, A006966, A030449, A030450, A058112*, A058115, A058122
• semigroups, inverse: A001428*
• semigroups, non-commutative: A079198, A079199, A079180
• semigroups, numerical: A007323
• semigroups, regular: A001427
• semigroups, relation: A007903
• semigroups, self-converse: A029851*, A058106, A058118-A058122, A058169
• semigroups, with identity: see monoids
• semigroups: see also A030450, A079207, A079208, A079209, A079241, A079242, A079243, A079244, A079245
• semiorders: A006531
• semiperfect numbers: A005835*
• semiprimes (or semi-primes): sequences related to :
• semiprimes (or semi-primes): A001358*, A072000 ("pi"), A064911, A066265
• separating families: A007600
• sequence and first differences include all numbers, etc.: sequences related to :
• sequence and first differences include all numbers, etc.: A005228*, A030124, A037257, A037258, A037259, A061577, A140778, A129198, A129199
• sequence and first differences include all numbers, etc.: A100707, A093903, A005132, A006509, A081145, A099004
• sequences by number of increases: A000575
• sequences depending on A-numbers in OEIS: see diagonal sequences
• Sequences of prescribed quadratic character:: A001990, A001992, A001988, A001986
• sequences offering a monetary reward, sequences related to :
• sequences offering a monetary reward: A030979, A057641, A079526, A058209
• sequences that contain every finite sequence of nonnegative integers, sequences related to :
• sequences that contain every finite sequence of nonnegative integers: A067255 A108730 A108731 A098280 A098281 A098282 A108244 A108736 A108737 A055932 A066099
• sequences that need extending, :
• sequences that need extending, challenge problems: Looking for a good challenge? Try any of the following:
• sequences that need extending, challenge problems: A000937 (closed n-snake-in-the-box problem)
• sequences that need extending, challenge problems: A003142 (no-3-in-line on 3^n grid)
• sequences that need extending, challenge problems: A004137 (maximal number of edges in a graceful graph on n nodes)
• sequences that need extending, challenge problems: A006945 (smallest odd number that requires n Miller-Rabin primality tests)
• sequences that need extending, challenge problems: A016088 and A046024 (when does Sum 1/p (p prime) exceed n?)
• sequences that need extending, challenge problems: A076523 (maximal number of halving lines for 2n points in plane)
• sequences that need extending, challenge problems: A081287 (packing squares of sizes 1 to n)
• sequences that need extending, challenge problems: A085000 (maximal determinant of an n X n matrix using the integers 1 to n^2)
• sequences that need extending, challenge problems: A087725 (n X n generalization of Sam Loyd's Fifteen Puzzle)
• sequences that need extending, challenge problems: A087983 (values taken by permanent of n X n (0,1)-matrix)
• sequences that need extending, challenge problems: A089472 (values taken by the determinant of a real (0,1)-matrix of order n)
• sequences that need extending, challenge problems: A099155 (snake-in-the-box problem)
• sequences that need extending, challenge problems: {a(1) = 1, a(2) = 4, a(3) <= 8, a(4) <= 24, a(5) <= 32}, from Erich Friedman, not yet in OEIS: minimum value of k so that k copies each of cubes of sides 1 through n can be used to exactly fill some rectangular box
• sequences that need extending, short sequences that badly need extending: (1) A001220 (Wieferich primes), A003142 (non-collinear points in cube), A007540 (Wilson primes), A048872 (line arrangements), A054909 (even unimodular lattice), A055549 (normal matrices), A058759 and A056287 (Shannon switching function), A074025 (triplewhist tournaments)
• sequences that need extending, short sequences that badly need extending: (2) A076337 (Riesel numbers)
• sequences that need extending: see also Challenge Problems: Independent Sets in Graphs
• sequences that need extending: see also unsolved problems in number theory (selected)
• sequences that need extending: see also huge web page with full list of sequences that need extending
• sequences which agree for a long time but are different, sequences related to :
• sequences which agree for a long time but are different: A004953, A004973, A025646, A025661, A025647, A025653, A084500, A084557, A103127, A103192, A103747, A010918, A019484, A078608, A129935
• sequences which grow too rapidly to have their own entries, sequences related to :
• sequences which grow too rapidly to have their own entries, see: Ackermann numbers (Comments on A046859), Conway-Guy sequence (Comments on A046859), Friedman sequence (Comments on A014221), Goodstein sequence (Comments on A056041), n!!...! (Comments on A000142 and A000197)
• sequences whose extension requires factoring large numbers: A031439, A031440, A031442, A082021, A082132, A034970, A084599
• sequences with a gap , sequences related to :
• sequences with a gap (some later term is known) (1): A000043, A001438, A002853, A005136, A006066, A016729, A027623, A037289, A048893,
• sequences with a gap (some later term is known) (2): A051070, A063984, A064156, A068314, A068489, A070911, A072127, A072128,
• sequences with a gap (some later term is known) (3): A072288, A074025, A077659, A078457, A078714, A078814, A080371, A080372,
• sequences with a gap (some later term is known) (4): A080802, A088622, A091295, A091967, A094670, A098472, A098876, A100804,
• sequences with a gap (some later term is known) (5): A103833, A105674, A105676, A105677, A109886, A110409, A112822, A113571,
• sequences with a gap (some later term is known) (6): A114457, A118710, A119479, A119734, A121154
• sequences with a gap (some later term is known) (7): A002982, A005849, A055233, A064593, A066289
• sequences with a gap (some later term is known) (8): (circulant graphs) A049287, A049288, A049289, A049297, A049309, A060966, A082276
• sequences with a large but finite number of terms: see finite sequences with a large number of terms
• Serbian: A056597
• Serbian: see also Index entries for sequences related to number of letters in n
• series-parallel , sequences related to "series-parallel" :
• series-parallel networks, approximation to: A058585
• series-parallel networks: A000084* A000669* A001572 A001573 A001574 A001575 A001677 A006349 A006350 A006351
• series-parallel networks: see also Moon (1987), "Some enumerative results on series-parallel networks", sequences mentioned in
• series-parallel numbers: A000137 A000163 A000432 A000527 A005840 A007803 A036654 A036655 A048172 A051045 A051389 A053554
• set partitions
• set partitions: A000110, A193023
• sets of lists: A000262, A002868
• sexy prime pairs: A023201, A046117
• shadow of constants: A108912, A110557, A110621, A110623
• Shannon switching function: A058759*
• Shell sort: A003462, A033622, A036562, A036564, A036569, A055875, A055876
• shift registers , sequences related to :
• shift registers, enumeration of output sequences: A000013, A000016, A000031
• shift registers, enumeration of: A001139
• shift registers, periods: A005417
• shifts left when transformed, sequences related to :
• shifts left when transformed:: (1) A007461, A007439, A007560, A007464, A003238, A007562, A007477, A007558, A007462, A007463, A007548, A007469
• shifts left when transformed:: (2) A003659, A007460, A007551, A007557, A007561, A007563, A007472, A007549, A007470, A007564, A007556
• shoe lacing: see lacing a shoe
• shoelaces: see lacing a shoe
• shogi (Japanese chess): A062103
• short sequences that need extending, see sequences that need extending
• shuffle , shuffling etc., sequences related to :
• shuffle groups: see groups, shuffle
• shuffling (1): A000375 A000376 A002139 A007070 A007071 A007346 A014525 A014766 A014767 A019567
• shuffling (2): A024222 A024542 A035485 A035490 A035491 A035492 A035493 A035494 A035499 A035500 A035501 A047992
• shuffling (3): A002326* A055388

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Si

• Siegel modular forms or modular group, sequences related to :
• Siegel modular forms or modular group, Poincare series for: A006476 A027633 A027634 A027672 A029143 A051629 A051630
• Siegel modular group, order of: A027638 A027639
• Sierpinski , sequences related to :
• Sierpinski gasket: see Sierpinski triangle
• Sierpinski numbers problem: A040076* A050921* A050412 A052333 A040081 A038699 A033919 A046067 A046068 A014566
• Sierpinski triangle: A047999, A001316
• Sierpinsky: the preferred spelling in the OEIS is Sierpinski
• sieve, sequences generated by a :
• sieve, badly sieved numbers: A066680, A066681
• sieve, binary: A007950*
• sieve, Eratosthenes: A000040, A004280, A038179, A083140, A083221, A099361
• sieve, even: A056533
• sieve, Flavius Josephus: A000960* A047241 A056530 A056531 A099204 A099207 A099243
• sieve, generated by a: A002491 A003309 A003310 A003311 A006508 A045954 A119485 A119486
• sieve, golden, A099267
• sieve, multilevel: A005209*
• sieve, Sierpinski: A047999*, A051679
• sieve, Smarandache: A007952*, A028920, A048859
• sieve, spiral: A005620 A005621 A005622 A005623 A005624 A005625 A005626
• sieve, square: A002960*
• sieve, ternary: A007951*
• sigma(n) , sequences related to :
• sigma(n) = sum of divisors of n: A000203* (also called sigma_1(n))
• sigma(n): records: A034885, A002093, A007626
• sigma_0(n): A000005 (number of divisors of n)
• sigma_1(n): A000203 (sum of divisors of n)
• sigma_k(n), the sum of the k-th powers of the divisors of n: for k= 0,...,9: A000005, A000203, A001157, A001158, A001159, A001160, A013954, A013955, A013956, A013957
• sigma_k(n), the sum of the k-th powers of the divisors of n: for k=10,...,19: A013958, A013959, A013960, A013961, A013962, A013963, A013964, A013965, A013966, A013967
• sigma_k(n), the sum of the k-th powers of the divisors of n: for k=20,...,24: A013968, A013969, A013970, A013971, A013972
• signature sequences , sequences related to :
• signature sequences (1): A007336 A007337 A023115 A023116 A023117 A023118 A023119 A023120 A023121 A023122 A023123 A023124
• signature sequences (2): A023125 A023126 A023127 A023128 A023129 A023130 A023131 A023132 A023133 A023134 A035796
• silver mean, 1+sqrt(2): A014176*
• silver number: A060006, A072117
• Silverman's sequence: A001462
• simple cubic lattice, theta series of: A005875*
• simple groups: see groups, simple
• simplex , simplices, sequences related to :
• simplex, barycentric subdivision of: A002050*
• simplices in a cube: A124505, A108973
• Simplices:: A002050, A004145, A005461, A005462, A005463, A005464
• simplicial arrangements of lines: A003036*
• simplicial polyhedra: A000109*
• sin(x), sequences related to :
• sin(x):: A007119, A007118, A001250, A000965, A003712, A006656, A007301, A002017, A003715, A003717, A003705, A003706, A003709, A003722
• sinh(x):: A000965, A003724, A006154, A006656, A003704, A003716, A002084, A003722, A002085
• siteswaps (or site swaps): see under juggling
• Sirag numbers: A196224

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Sk

• skat: A027887, A027888
• skeins: A007162, A007167
• skinny numbers: A061909
• skip 1, take 2, etc, A007607
• slicing a bagel: A003600*
• slicing a pancake: A000124*
• slicing a pizza: A000124*
• slicing a cake: A000125*
• slicing a torus: A003600*
• slicing space: A000127*
• sliding block puzzles: see Fifteen Puzzle
• slowest increasing sequences: sequences related to :
• slowest increasing sequences: ( 1): A000027, A007989, A016062, A037988, A068174, A073628, A076475, A080839, A085262, A093104,
• slowest increasing sequences: ( 2): A093105, A094591, A097354, A097473, A001114, A097912, A098080, A098165, A098211, A098754,
• slowest increasing sequences: ( 3): A098791, A098949, A098953, A098954, A101222, A101233, A101235, A101237, A101238, A101239,
• slowest increasing sequences: ( 4): A101240, A101241, A101242, A101243, A101244, A101247, A101258, A102085, A102150, A102234,
• slowest increasing sequences: ( 5): A102235, A102236, A102252, A105771, A105967, A107433, A107478, A107798, A107818, A107835,
• slowest increasing sequences: ( 6): A107836, A107927, A108237, A109277, A110095, A121644, A129268, A129459, A129513, A129562,
• slowest increasing sequences: ( 7): A129850, A130011, A131194, A131368, A133835, A137355, A153123, A156604, A159619, A168091,
• slowest increasing sequences: ( 8): A174722, A176578
• Slowly converging series:: A001510
• Smallest algorithms:: A006457, A006458, A006459
• smallest number not a product of earlier terms, sequences related to :
• smallest number not a product of earlier terms: A000028 A026416 A066724 A026477 A050376 A084400
• Smarandache , sequences related to :
• Smarandache numbers: see Kempner-Smarandache numbers
• Smarandache-Wagstaff function: A125138, A056983, A056984, A056985
• Smarandache-Wellin numbers and primes: A019518, A069151, A046035, A046284, A068670
• Smith numbers: A006753*
• smooth numbers, sequences related to :
• smooth numbers: k-rough numbers: k=2, A000027 ; k=3, A005408 ; k=5, A007310 ; k=7, A007775 ; k=11, A008364 ; k=13, A008365 ; k=17, A008366 ; k=19, A166061 ; k=23, A166063
• smooth numbers: k-smooth numbers: k=2, A000079 ; k=3, A003586 ; k=5, A051037 ; k=7, A002473 ; k=11, A051038 ; k=13, A080197 ; k=17, A080681 ; k=19, A080682 ; k=23, A080683
• sn: A004005, A060628
• snake-in-box problem
• snake-in-box problem: A000937*, A099155
• snake-in-box problem: other "snake" sequences: A127399, A127400, A127400, A127401, A031940, A104035, A155100, A046661, A185896, A189722
• Snoopy cartoon sequences: A006345, A006346

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_So

• sociable numbers, sequences related to :
• sociable numbers, A003416*
• sociable numbers, infinitary: A000173*
• sociable numbers, unitary: A000173*
• sod (sum of digits): see sum of digits (main entry)
• sodalite: A005893*
• Soddy: see Apollonian packings
• solid partitions: see partitions, solid
• solitary numbers: A014567*
• Solovay-Strassen primality test: A007324
• solutions of x^k = 1 in symmetric group, for k=2,3,4,...: see permutations, of order dividing k
• solutions to x+y=z: A002848, A002849
• solvable numbers: A056866
• Somos sequences, sequences related to :
• Somos sequences: A006720*, A006721*, A006722*, A006723*, A006769
• songs, sequences related to :
• songs, popular, sequences from: A038674, A085735, A091978, A060858, A064373, A096582
• sopf(n) and sopfr(n), sequences related to :
• sopf(n), sum of primes dividing n (without repetition): A008472
• sopfr(n), sum of primes dividing n (with repetition): A001414
• Sophie Germain primes: see primes, Germain
• sorting , sequences related to :
• sorting, A036604* A001768* A001855* A003071* A006282*
• sorting, Batcher parallel sort: A006282
• sorting, bridge hands: A065603
• sorting, by block moves: A065603
• sorting, by list merging: A003071
• sorting, by prefix reversal: A058986
• sorting, merge sort: A001768
• sorting, networks: A003075*, A006245*, A006246*, A006248*
• sorting, Shell sort: A003462, A033622, A036562, A036564, A036569, A055875, A055876
• sorting: see also (1) A002871 A002872 A002873 A002874 A002875 A027361 A027432 A033622 A036073 A036074 A036075 A036076
• sorting: see also (2) A036077 A036078 A036079 A036080 A036081 A036082 A036567 A036569

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Sp

• spaces, sequences related to :
• spaces, linear: see linear spaces
• spaces: (1) A001199 A001439 A001548 A001776 A002876 A002877 A014595 A018924 A018925 A031436 A031437 A031438
• spaces: (2) A056642 A001776 A007182 A007293 A007473
• Spanish: see also Index entries for sequences related to number of letters in n
• special numbers: A002116
• specific heat, sequences related to :
• specific heat: (1) A001393 A001408 A002165 A002167 A002169 A002916 A002917 A002918 A002922 A005392 A005400 A005402
• specific heat: (2) A010111 A010112 A010113 A010114 A029872 A029873 A029874 A030122 A057376 A057380 A057384 A057388
• specific heat: (3) A057392 A057396 A057400 A057404
• spectral arrays, sequences related to :
• spectral arrays: A007068 A007069 A007071 A022158 A022159 A022160 A022161 A022162 A022163 A022164 A022165
• spectrum of a number: Graham, Knuth and Patashnik in "Concrete Mathematics" define the spectrum of x to be the sequence [floor(x), floor(2x), floor(3x),...]. In the OEIS that is called the Beatty sequence (q.v.) defined by x
• speed of light: A003678*
• spelling and notation , guide to :
• spelling and notation: the following are the correct spellings for some words and symbols that are commonly mistyped in the OEIS:
• spelling: > (not grth)
• spelling: >= (not \ge)
• spelling: a(n) for n-th term in sequence (not a[n])
• spelling: color (not colour - the OEIS uses US spelling)
• spelling: dependent (not dependant)
• spelling: dissectable (not dissectible)
• spelling: e for 2.718281828... (not E)
• spelling: generalize (not generalise)
• spelling: J. S. Bach (not J.S. Bach - a period should be followed by a space, except in hyphenated names like J.-P. Serre)
• spelling: log(n) (not ln(x) or Log[x])
• spelling: log_10(x) for logs to base 10
• spelling: n X n (not n x n, not n by n)
• spelling: n-th, m-th, i-th, j-th, etc. (not nth, mth, ith, jth)
• spelling: neighbor (not neighbour)
• spelling: nilpotent (not "nil-potent")
• spelling: nonnegative (not non-negative)
• spelling: nonprime (not non-prime)
• spelling: nonzero (not non-zero)
• spelling: occurring (not occuring)
• spelling: Pi for 3.141592654... (not pi)
• spelling: prime(n) (not p(n) or Prime(n), etc.)
• spelling: recurrence (not recurence)
• spelling: semiprime (not semi-prime)
• spelling: sin(x) (not Sin[x])
• spelling: squarefree (not square-free)
• spelling: submatrix (not sub-matrix)
• spelling: zeros (not zeroes)
• Sperner families: A007695*
• Sperner's theorem: A001405*
• sphere, surface area of n-dimensional: A072478/A072479
• sphere, vector fields on: A053381
• sphere, volume of n-dimensional: A072345/A072346
• spherical designs, sequences related to :
• spherical designs: A007828, A076868, A076869, A076870
• Spheroidal harmonics:: A002692, A002693, A002695
• spirals, sequences related to :
• spirals, enumeration of: A006775, A006776, A006777, A006778, A006779, A006780
• spirals, sequences from: A001107, A002939, A007742, A033951, A033952, A033953, A033954, A033989, A033990, A033991, A002943, A033996, A033988
• split numbers: A036382

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Sq

• sqrt(2) etc., sequences related to :
• sqrt(2), continued cotangent for: A002666*
• sqrt(2), continued fraction convergents to: A001333*/A000129*
• sqrt(2), decimal expansion of: A002193*; binary expansion: A004539
• sqrt(3), decimal expansion of: A002194*
• sqrt(n), length of period of continued fraction for: A003285*, A035015, A013943
• sqrt(n), nearest integer to, etc.: A000196*, A000194*, A003059*, A000267
• sqrt(p), length of period of continued fraction for: A054269*
• SQS: see Steiner quadruple systems
• square arrays, indexing: A073189*
• square lattice , sequences related to :
• square lattice (1):: A002976, A002909, A006462, A002907, A004020, A006731, A006808, A006727, A006461, A002908
• square lattice (2):: A002890, A006191, A002900, A006725, A005566, A006724, A006143, A005768, A005436, A002931
• square lattice (3):: A007290, A005559, A006732, A006734, A006728, A006730, A003304, A002928, A003305, A003493
• square lattice (4):: A006733, A006729, A005558, A007288, A005563, A006835, A006189, A006772, A005560, A002979
• square lattice (5):: A004018, A006144, A005883, A007215, A003203, A173380, A002906, A001411, A006817, A006192
• square lattice (6):: A005401, A003489, A005561, A005569, A007220, A000328, A005555, A006773, A005562, A005402
• square lattice (7):: A003198, A005564, A006814, A006815, A006816, A007221, A006142, A007291, A003201, A006726
• square lattice (8):: A002927, A005770, A005567, A005769, A005556, A005565, A007222, A005557
• square lattice, polygons on: A002931*
• square lattice, sublattices of: A054345*, A054346*
• square lattice, theta series of: A004018*
• square lattice, walks on: A001411*
• square numbers: A000290*, A001844* (centered)
• square pyramidal numbers: A000330*, A005918 (surface)
• square root of pi: A002161
• square roots , sequences related to :
• square roots of integers (01): A002193 (sqrt(2)), A002194 (sqrt(3)), A002163 (sqrt(5)), A010464 (sqrt(6)), A010465 (sqrt(7)), A010466 (sqrt(8)=2*sqrt(2)), A010467 (sqrt(10)), A010468 (sqrt(11)), A010469 (sqrt(12)=2*sqrt(3)), A010470 (sqrt(13)), A010471 (sqrt(14)), A010472 (sqrt(15)),
• square roots of integers (02): A010473 (sqrt(17)), A010474 (sqrt(18)=3*sqrt(2)), A010475 (sqrt(19)), A010476 (sqrt(20)=2*sqrt(5)), A010477 (sqrt(21)), A010478 (sqrt(22)), A010479 (sqrt(23)), A010480 (sqrt(24)=2*sqrt(6)), A010481 (sqrt(26)), A010482 (sqrt(27)=3*sqrt(3)), A010483 (sqrt(28)=2*sqrt(7)), A010484 (sqrt(29)),
• square roots of integers (03): A010485 (sqrt(30)), A010486 (sqrt(31)), A010487 (sqrt(32)=4*sqrt(2)), A010488 (sqrt(33)), A010489 (sqrt(34)), A010490 (sqrt(35)), A010491 (sqrt(37)), A010492 (sqrt(38)), A010493 (sqrt(39)), A010494 (sqrt(40)=2*sqrt(10)), A010495 (sqrt(41)), A010496 (sqrt(42)),
• square roots of integers (04): A010497 (sqrt(43)), A010498 (sqrt(44)=2*sqrt(11)), A010499 (sqrt(45)=3*sqrt(5)), A010500 (sqrt(46)), A010501 (sqrt(47)), A010502 (sqrt(48)=4*sqrt(3)), A010503 (sqrt(50)=5*sqrt(2)), A010504 (sqrt(51)), A010505 (sqrt(52)=2*sqrt(13)), A010506 (sqrt(53)), A010507 (sqrt(54)=3*sqrt(6)), A010508 (sqrt(55)),
• square roots of integers (05): A010509 (sqrt(56)=2*sqrt(14)), A010510 (sqrt(57)), A010511 (sqrt(58)), A010512 (sqrt(59)), A010513 (sqrt(60)=2*sqrt(15)), A010514 (sqrt(61)), A010515 (sqrt(62)), A010516 (sqrt(63)=3*sqrt(7)), A010517 (sqrt(65)), A010518 (sqrt(66)), A010519 (sqrt(67)), A010520 (sqrt(68)=2*sqrt(17)),
• square roots of integers (06): A010521 (sqrt(69)), A010522 (sqrt(70)), A010523 (sqrt(71)), A010524 (sqrt(72)=6*sqrt(2)), A010525 (sqrt(73)), A010526 (sqrt(74)), A010527 (sqrt(75)=5*sqrt(3)), A010528 (sqrt(76)=2*sqrt(19)), A010529 (sqrt(77)), A010530 (sqrt(78)), A010531 (sqrt(79)), A010532 (sqrt(80)=4*sqrt(5)),
• square roots of integers (07): A010533 (sqrt(82)), A010534 (sqrt(83)), A010535 (sqrt(84)=2*sqrt(21)), A010536 (sqrt(85)), A010537 (sqrt(86)), A010538 (sqrt(87)), A010539 (sqrt(88)=2*sqrt(22)), A010540 (sqrt(89)), A010541 (sqrt(90)=3*sqrt(10)), A010542 (sqrt(91)), A010543 (sqrt(92)=2*sqrt(23)), A01054 4 (sqrt(93)),
• square roots of integers (08): A010545 (sqrt(94)), A010546 (sqrt(95)), A010547 (sqrt(96)=4*sqrt(6)), A010548 (sqrt(97)), A010549 (sqrt(98)=7*sqrt(2)), A010550 (sqrt(99)=3*sqrt(11))
• square roots, functional: see functional square roots
• square roots, of numbers: we can write sqrt(n) = b*sqrt(c) where c is squarefree. Then b = A000188(n) is the "inner square root" of n, c = A007913(n), LCM(b,c) = A007947(n) = "squarefree kernel" of n and bc = A019554(n) = "outer square root" of n
• square roots, of primes: A000006
• square, truncated: see truncated square
• square-free: see squarefree
• square-full numbers: see squarefull numbers
• squared rectangles and squared squares: A002839*, A006983*, A002881, A002962, A014530, A005842
• squared squares: see squared rectangles
• squarefree , sequences related to :
• squarefree graphs: A006786, A006855
• squarefree numbers, gaps between: A020753, A020754, A020755
• squarefree numbers: A005117*, complement is A013929
• squarefree numbers: see also A007424, A007674, A007675, A013929, A039956, A048640, A053797, A053806, A045882, A051681, A056912
• squarefree sequences: A005678, A005679, A005680, A005681
• squarefree words: A006156, A007413, A170823
• squarefull numbers: A001694*, A013929*
• squares, A000290*
• squares, in a rectangle: A168339
• squares, Latin, see Latin squares
• squares, magic: see magic squares
• squares, packing: A005842
• squares, reversing digits of :
• squares, reversing digits of, gives a square: A033294, A035090, A035122, A035125, A061909, A085305, A102859, A104379, A129914.
• squares, reversing digits of, gives a square: see also A002942, A035124.
• squares, reversing digits of, gives a square: for other polytopal numbers see A035090
• squares, sums of, see under sums of squares
• squares, truncating digits of :
• squares, truncating digits of, gives a square: condensed version: A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).
• squares, truncating digits of, gives a square: (base 2): A055792, A084703, A001541, A001542
• squares, truncating digits of, gives a square: Numbers such that floor[a(n)^2/b] (i.e. their square with last base-b digit dropped) is a square are listed for b=10,9,...,3,2 in: A031149, A204502, A204514, A204516, A204518, A204520, A004275, A001075, A001541.
• Their squares are A023110, A204503, A204515, A204517, A055851, A055812, A055808, A055793, A055792.
• The squares divided by b (i.e. the new square when the last base b digit is dropped) are A202303, A204513, ?, ?, ?, ?, A000290, A098301, A084703.
• The square roots of these are: A031150 [base 10], (essentially A028310, i.e., A000027: all integers, in base 9), A204512 , A204517 , A204519 , A204521 , (all integers, in base 4, as for base 9), A001353 , A001542 .
• squares, truncating digits of, gives a square: see also Hasler's talk page
• squares, undulating: A016073*
• Squares:: A007434, A006716, A002942, A002442, A002441, A002440, A007297, A001844, A007433, A000993

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_St

• stacking boxes: A089054*, A089239, A089055
• stacks: A001522*, A001523*, A001524*, A003697
• stamp-folding: A001011*
• stamp-folding: see folding
• Standard deviation:: A007654, A007655
• Stanley, Enumerative Combinatorics, sequences found in
• stapled intervals: A090318
• stapled sequences: see stapled intervals
• star numbers, sequences related to :
• star numbers: A003154* A006060 A006061 A006062 A045946 A046752 A051673 A054318 A054319 A054320 A055684
• stars in sky: A053406
• statistical models: see under models
• Stechkin's function: A055004
• Steiner systems , sequences related to :
• Steiner systems, quadruple (SQS's): A051390* A124120 A124119
• Steiner systems: A001293* (S(5,8,24))
• Steiner systems: A187567 and A187585 (S(2,4,n))
• Steiner triple systems (STS's): A001201*, A030128*, A030129*, A051390*, A002885 (cyclic), A006181, A006182, A051391
• stella octangula numbers: A007588*
• Stern's sequences and related sequences :
• Stern's diatomic sequence: A002487*
• Stern's sequence: A005230*
• Stern's and Stern-Brocot sequences: see also (1) A002435 A002487 A003686 A006842 A006843 A006893 A008619 A014172 A014173 A014175 A020652 A038567
• Stern's and Stern-Brocot sequences: see also (2) A042978 A046126 A049455 A049456 A054204 A054424 A054427 A057114 A057115 A057431 A057432 A059893
• Stern's and Stern-Brocot sequences: see also (3) A064881 A064882 A064883 A064884 A064885 A064886 A065249 A065250 A065625 A065658 A065659 A065674
• Stern's and Stern-Brocot sequences: see also (4) A065675 A065676 A065810 A065934 A065935 A065936 A065937 A070878 A070879
• Stern-Brocot tree: A007305*/A007306*, A007305*/A047679*, A070880*/A049456*
• Stirling numbers , sequences related to :
• Stirling numbers, associated: A008299* A008306* A000276 A000478 A000483 A000497 A000504 A000907 A001784 A001785
• Stirling numbers, generalized: (1) A000369 A000558 A000559 A001701 A001702 A001705 A001706 A001707 A001708 A001709 A001711 A001712
• Stirling numbers, generalized: (2) A001713 A001714 A001716 A001717 A001718 A001719 A001721 A001722 A001723 A001724 A004747 A011801
• Stirling numbers, generalized: (3) A013988 A035342 A035469 A046817 A048176 A049029 A049385 A049444 A049458 A049459 A049460 A051141
• Stirling numbers, generalized: (4) A051142 A051150 A051151 A051186 A051187 A051231 A051338 A051339 A051379 A051380 A051523
• Stirling numbers, of 1st kind, triangle of: A008275*, A048994*, A048594, A008276
• Stirling numbers, of 1st kind: A000254
• Stirling numbers, of 1st kind:: A007189, A000914, A000254, A000399, A001303, A000454, A000482, A001233, A000915, A001234
• Stirling numbers, of 2nd kind, triangle of: A008277*, A048993*, A019538, A008278
• Stirling numbers, of 2nd kind: A000225, A000392, A000453, A000481, A000770, A000771, A049434, A049447, A049435
• Stirling numbers, of 2nd kind:: A007190, A000392, A000453, A001297, A000481, A000770, A000771, A001298
• Stirling transform: (1) A003633 A003659 A005172 A005264 A005804 A005805 A006677 A007469 A007470 A050946 A051782 A051784
• Stirling transform: (2) A052342 A055896 A055924
• Stirling transform: see Transforms file
• Stirling's formula: A001163/A001164
• Stolarsky array: A007064 A007067 A027941 A035487 A035488 A035489 A035506 A035507 A035508 A035509 A035510 A035511
• Stopping times:: A007177, A007176, A007186
• Storage systems:: A005595, A005594
• Stormer numbers : A005528*
• Strobogrammatic numbers: A000787* A007597 A018846 A018847 A018848 A018849
• strongly multiplicative means that a(m*n) = a(m)*a(n) for all m and n >= 1
• strongly refactorable numbers: A141586
• structure constants: A003673, A005600, A007235
• structures, differential: A001676*
• STS: see Steiner triple systems

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Su

• subfactorial numbers: A000166*
• subgroups of a group, see: groups, maximal number of subgroups in
• sublattices , sequences related to :
• sublattices of given index in generic d-dimensional lattices: A000203 A001615 A001001 A060983 A038991 A038992 A038993 A038994 A038995 A038996 A038997 A038998 A038999
• sublattices of given index in various lattices: A003051, A003050, A054345, A054346, A054384
• sublattices, similar: Z^2: A000161, A002654; Z^4: A035292; D_4: A045771
• sublime numbers: A081357*. A145769
• Subsequences of [1 ... n]:: A007481, A007484, A007455, A007482, A007483
• subset sums , sequences related to :
• subset sums modulo m, sequences related to: A000016, A000048, A053633, A063776, A064355, A068009, A061857, A061865
• distinct subset sums: A201052
• subtract if you can else add: see Recaman's sequence
• subtract-a-prime: A014589*
• subtract-a-square: A014586*
• subway stops, sequences related to :
• subway stops: A000053 A000054 A001049 A007826 A011554
• subwords: A005943 A006697 A050186 A050430 A050431 A050432 A050433 A051168
• Such sequence: see Perrin sequence A001608
• suitable numbers: A000926*
• sum of digits , sequences related to :
• sum of digits in powers of m: A001370 (2^n), A004166 (3^n), A065713 (4^n), A066001(5^n), A066002 (6^n), A066003(7^n), A066004 (8^n), A065999 (9^n), A066005 (11^n), A066006 (12^n)
• sum of digits of k^n mod n: (k=2) A000079, A001370, A175434, A175169; (k=3) A000244, A004166, A175435, A067862; (k=5) A000351, A066001, A175456; (k=6) A000400, A066002, A175457, A067864; (k=7) A000420, A066003, A175512, A067863; (k=8) A062933; (k=13) A001022, A175527, A175528, A175525; (k=21) A175589; (k=167) A175558, A175559, A175560, A175552
• sum of digits, n times: A057147, A003634, A005349, A037478, A052489, A052490, A052491
• sum of digits: 1's-counting sequence: number of 1's in binary expansion of n: A000120
• sum of digits: A007953*, A010888* (digital root)
• sum of digits: digital sum (i.e. sum of digits) of n.: A007953
• sum of digits: sum of digits in bases b=10,3,4,...,9 (mod b): A053837-A053844
• sum of digits: sum of digits of (n written in base 3).: A053735
• sum of digits: sum of digits of (n written in base 4).: A053737
• sum of digits: sum of digits of n written in base 5.: A053824
• sum of digits: sum of digits of n written in base 6.: A053827
• sum of digits: sum of digits of n written in base 7.: A053828
• sum of digits: sum of digits of n written in base 8.: A053829
• sum of digits: sum of digits of n written in base 9.: A053830
• sum of digits: sum of digits of n written in bases 11-16.: A053831-A053836
• sum of first n squares equals a triangular number: A053611*, A039596, A053612, A136276
• sum of primes <= x: A034387
• sum-free subsets: A007865, A085489
• sum-full subsets: A093970 A093971
• Sum: the style used for sums in the OEIS is illustrated by: Sum_{ k = 2..infinity } 1/k^3
• sum: the style used for sums in the OEIS is illustrated by: Sum_{ k = 2..infinity } 1/k^3
• summarize previous term: A005151*
• Summation: the style used for sums in the OEIS is illustrated by: Sum_{ k = 2..infinity } 1/k^3
• summation: the style used for sums in the OEIS is illustrated by: Sum_{ k = 2..infinity } 1/k^3
• sums of divisors, sequences related to :
• sums of divisors:: A005100, A002093, A007497, A002192, A007503, A007369, A001065, A007370, A000203*, A006872, A006532, A000593, A003624, A001157, A005835, A007594, A007691, A001158, A007371, A007368, A007365, A001159, A007592, A007593, A007372, A007373, A001160
• sums of k cubes, number of ways of writing as: for k=1..9: A010057, A173677, A051343, A173678, A173679, A173680, A173676, A173681, A173682
• sums of numbers k at a time determine the numbers?: A057716, A074894*
• Sums of powers:: A005792, A001481, A000537, A000538, A000539, A000540, A002309, A000541, A002594, A000542, A003294, A007487
• sums of squares , sequences related to :
• sums of squares needed to represent n: A002828*, A151925
• sums of squares, sequences related to (01): A000118 A000132 A000141 A000143 A000144 A000145 A000152 A000156 A000404 A000408 A000414 A000415
• sums of squares, sequences related to (02): A000419 A000437 A000443 A000446 A000448 A000451 A000534 A000548 A000549 A000925 A001032 A001422
• sums of squares, sequences related to (03): A001481 A001944 A001948 A001974 A001983 A001995 A002654 A003995 A003996 A004018 A004144 A004195
• sums of squares, sequences related to (04): A004196 A004214 A004215 A004431 A004432 A004433 A004434 A004435 A004436 A004437 A004438 A004439
• sums of squares, sequences related to (05): A004440 A004441 A005792 A005875 A006431 A006456 A006532 A007475 A007667 A007692 A008451 A008452
• sums of squares, sequences related to (06): A008453 A009000 A009003 A014110 A016032 A018820 A018821 A018822 A018823 A018824 A018825 A020893
• sums of squares, sequences related to (07): A022544 A022551 A022552 A024507 A024508 A024509 A024795 A024803 A024804 A025284 A025285 A025286
• sums of squares, sequences related to (08): A025287 A025288 A025289 A025290 A025291 A025292 A025293 A025294 A025295 A025296 A025297 A025298
• sums of squares, sequences related to (09): A025299 A025300 A025301 A025302 A025303 A025304 A025305 A025306 A025307 A025308 A025309 A025310
• sums of squares, sequences related to (10): A025311 A025312 A025313 A025314 A025315 A025316 A025317 A025318 A025319 A025320 A025321 A025322
• sums of squares, sequences related to (11): A025323 A025324 A025325 A025326 A025327 A025328 A025329 A025330 A025331 A025332 A025333 A025334
• sums of squares, sequences related to (12): A025335 A025336 A025337 A025338 A025339 A025340 A025341 A025342 A025343 A025344 A025345 A025346
• sums of squares, sequences related to (13): A025347 A025348 A025349 A025350 A025351 A025352 A025353 A025354 A025355 A025356 A025357 A025358
• sums of squares, sequences related to (14): A025359 A025360 A025361 A025362 A025363 A025364 A025365 A025366 A025367 A025368 A025369 A025370
• sums of squares, sequences related to (15): A025371 A025372 A025373 A025374 A025375 A025376 A025377 A025378 A025379 A025380 A025381 A025382
• sums of squares, sequences related to (16): A025383 A025384 A025385 A025386 A025387 A025388 A025389 A025390 A025391 A025392 A025393 A025394
• sums of squares, sequences related to (17): A025414 A025415 A025416 A025417 A028237 A034705 A045698 A045702 A046711 A046712 A047700 A047701
• sums of squares, sequences related to (18): A048250 A048261 A048395 A048610 A050795 A050796 A050797 A050798 A050802 A050803 A050804 A051952
• sums of squares, sequences related to (19): A052199 A052261 A054321 A000161 A000603 A005653 A047808
• sums of squares and sums of cubes , sequences related to :
• sums of 16 squares, number of ways of writing as: A000152*
• sums of 2 cubes (1): A003325*, A004999*: not: A022555; A024670 (a^3+b^3, a>b>0), A135998
• sums of 2 cubes (2): A086119, A03325, A052276, A120398, A046894
• sums of 2 squares, number of ways of writing as: A000161*, A002654*, A004018*
• sums of 2 squares, see also under entries for: x^2+y^2 <= n
• sums of 2 squares: A001481*, A000404*, A000415*, A002313* (primes), A022544 (not)
• sums of 24 squares, number of ways of writing as: A000156*
• sums of 3 cubes: A004825*, A003072*, A024981*, A047702*, A025395, A047702*; not: A022561
• sums of 3 or fewer squares: A000290, A000404, A063725, A000408, A063691, A005767, A169580, A000378, A001481
• sums of 3 squares, allowing zeros: A000378 (the numbers), A005875 (number of ways)
• sums of 3 squares, number of ways of writing as: A005875*, A074590 (primitive solutions)
• sums of 3 squares: A000378*, A000419*, A004215* (not), A005767, A169580
• sums of 4 cubes: A004826; not: A022566
• sums of 4 squares, number of ways of writing as: A000118*
• sums of 4 squares: A004215*
• sums of 4th powers needed to represent n: A002377*
• sums of 5 cubes: A004827; not: A069136
• sums of 5 squares, number of ways of writing as: A000132*
• sums of 6 cubes: A004828, A046040; not: A069137
• sums of 6 squares, number of ways of writing as: A000141*
• sums of 7 cubes, number of ways of writing as: A173676*
• sums of 7 cubes: A004829, A018890; not: A018888
• sums of 7 squares, number of ways of writing as: A008451*
• sums of 8 cubes: A018889
• sums of 8 or 9 cubes: A018888
• sums of 8 squares, number of ways of writing as: A000143*
• sums of 9 squares, number of ways of writing as: A008452*
• sums of consecutives squares give squares: A001032, A097812, A151557
• sums of cubes: see sums of 2 cubes, sums of 3 cubes, etc.
• sums of distinct cubes: A003997, A001476 (not)
• sums of distinct squares: A003995, A001422 (not), A134422
• sums of tetrahedral numbers: A000797, A104246
• sums of two distinct prime cubes: A120398
• Sum_{k = 0..n} f(k) is standard OEIS notation (rather than sum_k^n, sum for k from 0 to n, etc.)
• super-abundant numbers: A004394
• superabundant numbers: A004394
• superfactorials: A000178*
• superior highly composite numbers: A002201
• Superpositions of cycles:: A003223, A003225, A003224
• superqueens: A007631, A051223, A051224
• supersingular primes: A006962
• supertangrams: A006074
• supertough: A007036
• Surfaces:: A000703, A000934
• susceptibility , sequences related to :
• susceptibility (1): A002166 A002168 A002170 A002906 A002907 A002910 A002911 A002912 A002913 A002914 A002915 A002919
• susceptibility (2): A002920 A002921 A002923 A002924 A002925 A002926 A002927 A002978 A002979 A003119 A003194 A003195
• susceptibility (3): A003220 A003279 A003488 A003489 A003490 A003491 A003492 A003493 A003494 A003495 A005399 A005401
• susceptibility (4): A007214 A007215 A007216 A007217 A007218 A007277 A007278 A007287 A007288 A008547 A008574 A010039
• susceptibility (5): A010040 A010041 A010042 A010043 A010044 A010045 A010046 A010047 A010115 A010116 A010117 A010118
• susceptibility (6): A010119 A010556 A010579 A010580 A030008 A030046 A054275 A054389 A054410 A054764 A055856 A055857

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Sw

• Swedish: A059124
• Swedish: see also Index entries for sequences related to number of letters in n
• switchboard problem: A005425
• switching classes: A002854*, A006536
• switching networks , sequences related to :
• switching networks (1): A000808 A000809 A000811 A000812 A000814 A000815 A000817 A000818 A000820 A000821 A000823 A000824
• switching networks (2): A000826 A000827 A000829 A000830 A000832 A000833 A000835 A000836 A000838 A000839 A000841 A000842
• switching networks (3): A000844 A000845 A000847 A000848 A000850 A000851 A000853 A000854 A000856 A000857 A000859 A000860
• switching networks (4): A000862 A000863 A000868 A000869 A000871 A000872 A000874 A000875 A000877 A000878 A000880 A000881
• switching networks (5): A000883 A000884 A000886 A000887 A000889 A000890 A000892 A000893 A000895 A000896 A001150 A001152
• Sylvester's sequence: A000058*
• Sym, game of: A006016*
• symbols in OEIS: see spelling and notation
• symmetric functions of noncommuting variables: A055105, A055106, A055107
• symmetric functions: A002120, A002121, A002122, A002123, A002124, A002125, A007323
• symmetric group S_n, sequences related to :
• symmetric group S_n, character table, degrees of irreducible representations for n = 5 through 14: A003869, A003870, A003871, A003872, A003873, A003874, A003875, A003876, A003877, A059796
• symmetric group S_n, character table, degrees of irreducible representations, Magma code for: A003875
• symmetric group S_n, character table, highest degree irreducible representations of: A003040, A117500
• symmetric group S_n, character table, zeros in: A006907*, A006908
• symmetric group S_n, character table: (1) A003040 A006907 A006908 A007870 A051748 A051749 A058884 A058886 A060240 A060437 A061064 A061220
• symmetric group S_n, character table: (2) A082733
• symmetric group S_n, order of: A000142*
• symmetric numbers: A006072, A007284, A046031
• S_n, see symmetric group

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Ta

• t is the first...: A005224*
• T-coordinates for arrays: (01) sequences related to :
• T-coordinates for arrays: (02) The usual coordinates for a triangular array are are T(n,k), with n >= 0 and 0 <= k <= n, as follows:
• T-coordinates for arrays: (03) .............T(0,0)
• T-coordinates for arrays: (04) .........T(1,0) T(1,1)
• T-coordinates for arrays: (05) ......T(2,0) T(2,1) T(2,2)
• T-coordinates for arrays: (06) ...T(3,0) T(3,1) T(3,2) T(3,3)
• T-coordinates for arrays: (07) ................................
• T-coordinates for arrays: (08) with associated generating function T(x,y) = Sum_{n >= 0, 0 <= k <= n} T(n,k) x^n y^k
• T-coordinates for arrays: (09) Sometimes it is more convenient to relabel the entries using U-coordinates U(i,j), i >= 0, j >= 0, i+j = n, as follows:
• T-coordinates for arrays: (10) .............U(0,0)
• T-coordinates for arrays: (11) .........U(1,0) U(0,1)
• T-coordinates for arrays: (12) ......U(2,0) U(1,1) U(0,2)
• T-coordinates for arrays: (13) ...U(3,0) U(2,1) U(1,2) U(0,3)
• T-coordinates for arrays: (14) ................................
• T-coordinates for arrays: (15) with associated generating function U(z,w) = Sum_{i >= 0, j >= 0} U(i,j) z^i w^j
• T-coordinates for arrays: (16) Of course U(x,y) = T(x, y/x), T(x,y) = U(x,xy)
• T-coordinates for arrays: (17) E.g. for Pascal's triangle A007318 with T(n,k) = binomial(n,k) we have T(x,y) = 1/(1-x*(1+y)), U(z,w) = 1/(1-z-w), the latter being rather nicer
• t-core partitions: see core partitions
• t-designs, spherical: see spherical designs
• table (or triangle) , sequences related to :
• table (or triangle) of (1): x+y (A003056*), |x-y| (A049581*), xy (A003991*, A004247*), [x/y] (A003988*), x^y (A003992*, A004248*, A051128*, A051129*), max(x,y) (A003984*, A051125*)
• table (or triangle) of (2): min(x,y) (A003983*, A004197*), x mod y (A051126*, A051127*), GCD(x,y) (A003989*, A050873*), LCM(x,y) (A003990*, A051173*), x OR y (A003986*), x XOR y (A003987*), x AND y (A004198*)
• table (or triangle) of (3): x divisible by y (A051731*), phi(x/y) (A054523), Moebius(x/y) (A054525)
• table: graphs by numbers of nodes and edges: A008406
• take 1, skip 2, etc.: A007606, A007607
• take-a-factorial: A014587*
• take-a-prime: A014589*
• take-a-square: A014586*
• take-a-triangle: A019509*
• tan(x), Taylor series for: A000182*, A002430*/A036279*
• tan(x): see also A000111, A007314, A006229, A001469, A003716, A003705, A003706, A003707, A003708, A003718, A003719, A003720, A003710, A003721, A003700, A003702
• tangent numbers , sequences related to :
• tangent numbers, A000182*
• tangent numbers, generalized:: A000061, A000176, A002302, A000191, A000318, A000320, A000411, A000464, A002303, A000488, A005801, A000518
• tangent numbers, triangle of: A008308*
• tangrams: A006074
• tanh(x), Taylor series for: A000182*, A002430*/A036279*
• tatami mats: A000930, A052270
• tau(n), number of divisors: A000005*
• tau(n), number of divisors: records: A002183, A002182
• tau_k or d_k numbers, number of ordered n-factorizations of n: (for explicit formula see A007425). Table by antidiagonals A077592; for k=1..11 see A000012, A000005, A007425, A007426, A061200, A034695, A111217, A111218, A111219, A111220, A111221
• taxi-cab numbers: A001235*, A018850*, A011541*, A023050*, A023051, A003826, A047696
• taxicab numbers: see taxi-cab numbers
• Tchebycheff is spelled Chebyshev throughout
• Tchebychev is spelled Chebyshev throughout
• Tchoukaillon (or Mancala) solitaire: A028932* (the main entry), A002491, A007952, A028920*, A028931, A028933

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Te

• telephone country codes: A055069
• tennis ball problem (1): The four sequences T_n, Y_n, A_n, S_n for s=2 are A000108, A000302, A000346, A031970; for s=3, A001764, A006256, A075045, A049235; for s=4, A002293, A078995, A078999, A078516
• tennis ball problem (2): A079486
• tensors: A005415 A006237 A006372 A006373 A045901 A050297 A052472
• terminology in OEIS: see spelling and notation
• ternary continued fractions: A000962, A000963, A000964
• ternary expansion of n: A007089, A005823, A005836
• ternary numbers: A007089
• ternary representation: A005812, A006287, A007734
• ternary words: (1) A006156 A045694 A045695 A045696 A045697 A046209 A046211 A051041 A051042 A051043 A053548 A053560
• ternary words: (2) A053561 A053562 A053563 A053564
• tetrahedral lattice: A007180, A007181
• tetrahedral numbers, sums of: A000797, A104246
• tetrahedral numbers: A000292*, A005894* (centered)
• tetrahedron, coloring a: A006008*
• tetrahedron, truncated: see truncated tetrahedron

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Th

• theta functions, see theta series
• theta series , sequences related to :
• theta series of A_3 lattice: A004015* A005884 A005885 A005886 A005887 A008663 A008664
• theta series of A_3* lattice: A004025, A005869, A004024, A004013*
• theta series of b.c.c. lattice, A004025, A005869, A004024, A004013*
• theta series of Coxeter-Todd lattice: A004010*
• theta series of cubic lattice:: A005876, A005877, A005875*, A005878
• theta series of diamond lattice:: A005926, A005925*, A005927
• theta series of D_3 lattice: A004015* A005884 A005885 A005886 A005887 A008663 A008664
• theta series of D_3* lattice: A004025, A005869, A004024, A004013*
• theta series of D_4 lattice:: A005880, A005879, A004011*
• theta series of D_5 lattice:: A005930
• theta series of extremal 72-dimensional lattice: A004675
• theta series of E_6 lattice:: A005129, A004007*
• theta series of E_7 lattice:: A005932, A005931, A004008*
• theta series of E_8 lattice, see: E8 lattice
• theta series of f.c.c. lattice: see f.c.c. lattice
• theta series of h.c.p.:: A005871, A005888, A005890, A005889, A005874, A005873, A005872, A004012*
• theta series of hexagonal lattice:: A005881, A005882, A004016*
• theta series of hexagonal net:: A005929, A005928*
• theta series of laminated lattices: see under laminated lattices
• theta series of Leech lattice: see Leech lattice
• theta series of P_{10b} packing:: A005954
• theta series of P_{10c} packing:: A004021
• theta series of P_{11a} packing:: A005953
• theta series of P_{12a} packing:: A005952
• theta series of P_{9a} packing:: A005951
• theta series of square lattice: A004018*, A004020 (with respect to edge), A005883 (with respect to deep hole)
• theta series of square lattice: see also A057655, A057656, A057961, A057962
• theta series of Z lattice: A000122
• theta(n), or Chebyshev function theta(n): A035158, A057872, A083535
• theta_2(q): A098108
• theta_3(q): A000122*
• theta_4(q): A002448
• Third One Lucky game: A006018
• three-way splitting of integers: A003622, A003623
• threshold functions (1): A000609*, A000615*, A000616, A000617, A000618, A000619, A001527, A001528, A001529, A001530, A001531
• threshold functions (2): A001532, A002077, A002078, A002079, A002080, A002833, A003184, A003186, A003187, A003217, A003218
• threshold functions , sequences related to :
• threshold functions, two-dimensional: A114043
• threshold graphs: A005840
• Thue-Morse sequence, sequences related to :
• Thue-Morse sequence: A010060*, A001285*
• Thue-Morse sequence: curling number transform of: A093914
• Thue-Morse ternary sequences (closed under a->abc, b->ac, c->b): A005679, A007413, A036577, A036578, A036579, A036580, A036581, A036582, A036583, A036584, A036585, A036586
• tic-tac-toe, sequences related to :
• tic-tac-toe: A008907 A048245 A048246 A061526 A061527 A061528 A061529 A061530 A061221
• tie, tying a: A000975*
• tiered orders: A006860
• tiling: [this entry needs to be expanded] A072065
• TITO: A161594

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_To

• toothpick sequence, sequences related to :
• toothpick sequence: A139250
• topologies , sequences related to :
• topologies : A001930* (unlabeled), A000798* (labeled)
• topologies, connected: A001928* (unlabeled), A001929* (labeled)
• torus, cubes in: A003012
• torus, slicing a: A003600
• total height of rooted trees: A000435*, A001863*, A001864*
• total orders, sequences related to :
• total orders: A007868, A046873
• total partitions: A000311* (labeled), A000669* (unlabeled)
• totative: A000010, A118854, A128250, A132952, A132953
• totient function phi(n) , sequences related to :
• totient function phi(n) : A000010*
• totient function phi(n), does not take these values: A007617*, A005277
• totient function phi(n), half-totient function: A023022
• totient function phi(n), inverse to: A002181, A006511, A014197, A032446, A032447, A036912, A058277
• totient function phi(n), iterating: A003434, A007755, A040176, A049108
• totient function phi(n), values of: A002202, A002180
• totient function phi(n): see also (1): A003277, A001783, A007694, A002088, A007374, A003275, A007367, A001838
• totient function phi(n): see also (2): A005239, A006872, A001274, A007015, A001494, A007366, A001837, A001836, A005867
• tough polyhedra: A007031
• tournaments , sequences related to :
• tournaments, automorphism groups of: A000198*, A049288
• tournaments, number of different tournament graphs: A000568*, A006215*
• tournaments, outcomes of: A000568*, A006215*
• tournaments, rigid: A003507*
• tournaments, round-robin: A000571
• tournaments, score sequences in: A000571*, A007747*, A047729*, A047730*, A047731*
• tournaments, tournament sequences: A008934*
• tournaments: see also (1) A000016, A000570, A001225, A002087, A002638, A003141, A003505, A005779, A006249, A006250, A006475
• tournaments: see also (2) A007079, A007150, A013976, A038375, A047656, A000474, A036981, A064120, A000438, A065594
• tours, rook: see rook tours
• Tower of Hanoi: see Towers of Hanoi
• Towers of Hanoi , sequences related to :
• Towers of Hanoi: A001511 A005262 A005665 A005666 A007664 A007665 A007798 A045898 A055622 A055661 A055662
• Towers of Hanoi: A007664 (4-peg version)
• towers of powers (e.g. 2^2^...^2): see parentheses, ways to arrange

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Tra

• traffic light problem: A006043, A006044
• trailing zeros in n!: A027868
• trails: A006817 A006818 A006819 A006851
• transform, hyperbinomial: see hyperbinomial transform A088956
• transformations on unit interval: A002823
• translation planes: A007375*
• transposable numbers, sequences related to :
• transposable numbers: A087502: when move R digit to L, doubles (in base n)
• transposable numbers: A092697: when move R digit to L, multiplies by n (finite)
• transposable numbers: A094676: when move L digit to R, divides by n, no. of digits is unchanged (finite)
• transposable numbers: A097717: when move L digit to R, divides by n (infinite)
• transposable numbers: A128857 is the same sequence as A097717 except that m must begin with 1
• transposable numbers: A146088: when move R digit to L, doubles (in base 10)
• transpositions: A001540 A013927 A029697 A029698 A029699 A029700 A051864 A055091
• tree, Stern-Brocot, see Stern-Brocot tree
• tree, unary-binary, definition: A029766
• trees , sequences related to :
• trees , A000055* (unlabeled), A000272* (labeled), A000081* (rooted unlabeled)
• trees, 2-colored, A004114, A007141, A007143, A036251, A038054, A038056*, A038058*, A038078, A052317
• trees, 3-colored, A007142, A007144, A036252, A038060*, A038062*, A038080
• trees, 3-valent, A000672*, A000673, A000675, A003692, A006570, A036361, A036362, A036363
• trees, 4-valent, see trees, quartic
• trees, 5-valent, A036648, A036649, A036650*
• trees, 6-valent, A036651, A036652, A036653*
• trees, achiral, A005629*, A005627, A003244, A003243, A003237, A003241, A003240
• trees, alternating, A007889
• trees, asymmetric, A000220*, A005354, A005755, A038078, A038080, A048828, A052303, A052326, A055334-A055339
• trees, automorphism group of, A001013
• trees, average height of rooted labeled: A000435*
• trees, balanced ordered, A007059
• trees, balanced, A006265
• trees, bicentered, A000200, A000673, A000677*, A036649, A036652
• trees, binary rooted: A002572*, A001190*
• trees, binary: A000672*, A001699*, A002572*, A001190*, A006223
• trees, bisectable, A007098
• trees, boron, A000671*, A000672*, A000673*, A000675*
• trees, by diameter, A000094, A001851, A000147, A000251, A000550, A000306, A000551, A001852, A000554, A000552, A000555, A000553
• trees, by height, A001383, A001384, A001385, A002658, A001854, A001864, A000235, A001853, A000299, A001863, A000342, A000393, A000418, A000429, A000435
• trees, by stability index, A003428, A003427, A003429
• trees, by valency, A006570
• trees, carbon, A000678, A005962
• trees, centered, A000022, A000675, A000676*, A036648, A036651
• trees, chiral, A005628, A005630*
• trees, codes for, A005517, A005518
• trees, complexity, A036988
• trees, constant, A051491, A051492, A051496
• trees, coordination sequence, A003945-A003954
• trees, diameter 3, A000554*
• trees, diameter 4, A000094*, A000555*
• trees, diameter 5, A000147*
• trees, diameter 6, A000251*
• trees, diameter 7, A000550*
• trees, diameter 8, A000306*
• trees, diameter of, A001851, A001852, A048828
• trees, directed, A006965, A006964
• trees, E-type, A007141, A007142, A007143, A007144
• trees, endpoints, A003228, A003227
• trees, endpoints, see trees, leaves
• trees, evolutionary, A007151, A007152
• trees, exchange, A007905
• trees, exponentiation of e.g.f., A006790
• trees, fat: A055779
• trees, fixed points in, A005200, A005202, A005201
• trees, free, A000672, A005588
• trees, graceful, A033472
• trees, Greg, A005263*, A005264, A048160*, A048159, A052302*, A052303
• trees, heap ordered, A001059
• trees, hexagon, A004127
• trees, homeomorphically irreducible: see trees, series-reduced
• trees, Husimi, A000083, A000314, A035351, A035352, A035353, A035356, A035357, A035085*, A035088*
• trees, identity: see trees, asymmetric
• trees, in wheel, A002985
• trees, indecomposable: A124593
• trees, intransitive, A007889
• trees, labeled, A001258, A007106
• trees, leaves, (cont.): A055541
• trees, leaves, A003228, A055290*, A055291-A055301, A055314*, A055315-A055324, A055334-A055339
• trees, Leech labeling problem, A007187
• trees, leftist, A006196*
• trees, log of e.g.f., A006802
• trees, M-type, A006959
• trees, matched, A005751, A005753, A005754, A005750, A005755
• trees, nodes, A055543
• trees, of subsets, A005173, A005174, A005175, A005640, A005805, A036250*, A038052*
• trees, oriented, A000151, A000238, A000238*, A007748, A007835
• trees, partially labeled, A000107, A000524, A000243, A000269, A000444, A000485, A000525, A000526
• trees, path length, A027874
• trees, permutation, A005355
• trees, phylogenetic: A000311*, A005805, A006677, A005804, A005640, A006679, A006681, A006682, A006678, A006680
• trees, planar, A002995*, A003092, A003093, A005354, A006241, A006963, A006082, A006080, A003239, A001895, A006081, A006079
• trees, planar, A106363
• trees, plane: see trees, planar
• trees, planted: see rooted trees
• trees, powers of g.f., A000106, A000242, A000300, A000343, A000395, A000439, A000529, A006706
• trees, projective plane, A006079, A006080, A006081, A006082
• trees, quartic: A000022, A000200, A000602*, A010372, A010373, A036506, A000598*
• trees, Ramsey theorem for: A004401
• trees, reversion of g.f., A007315, A037247*
• trees, rooted: A000081* (unlabeled), A000169* (labeled)
• trees, rotation distance between, A005152
• trees, Schroeder, A010683
• trees, search, see: rooted trees, search
• trees, series-reduced: A000014*, A000311*, A005512*, A059123*, A007827*, A002792*, A007831, A062136, A034851, A064060
• trees, shapes of: A006265
• trees, signed, A000060
• trees, spanning (1): A003690, A003691, A003696, A003733, A003734, A003739, A003740, A003745, A003746, A003751, A003753, A003755
• trees, spanning (2): A003756, A003761, A003762, A003767, A003768, A003773, A003774, A003779, A003780, A005822, A006237, A006238
• trees, spanning (3): A007725, A007726, A020871, A030019
• trees, spectra of, A006610
• trees, squares of, A001256
• trees, stability index of, A003427, A003428, A003429
• trees, stable, A003426
• trees, Steiner, A011798
• trees, steric, A000628, A000625
• trees, symmetries in, A003612, A003616, A003609, A003610, A003614, A003611, A007136, A003615, A007135, A003613
• trees, ternary, A001764*, A002707*
• trees, triangle of, A034799, A034800
• trees, trimmed, A002988*, A052320*, A002955
• trees, two-colored, A004114, A004113
• trees, Weiner index, A051175
• trees, with a forbidden limb, A002990, A002991, A002992, A002989, A014265, A014266, A014270-A014274, A014277-A014281, A052320, A052323, A052326
• trees, with bicentroid, A010373, A000677*
• trees, with centroid, A010372, A000676*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Tri

• tri-perfect numbers: A005820
• triangle of x+y, etc.: see entries under: table of ...
• triangle, coloring a: see coloring a triangle
• triangle: graphs by numbers of nodes and edges: A008406
• Triangles, A006066, A006947, A007237
• triangles, by perimeter: A005044*
• triangular arrays of integers , see under: table (or triangle) of numbers
• triangular arrays of integers, enumeration of special: A003402, A003403
• triangular arrays, indexing: A073189*
• triangular arrays, indexing: see T-coordinates for arrays
• triangular lattice: see A2 lattice
• triangular numbers, A000217*, A005448* (centered)
• triangular numbers, partitions into: A007294*
• triangular numbers, sums of three: A002097, A053604
• triangular numbers, sums of two: A051533*, A053603*, A051611
• triangular square numbers: A001110*, A001109
• triangular triples: A005044, A002620
• triangulations (1): A000103 A000109 A000256 A001683 A002709 A002710 A002711 A002712 A002713 A003122 A003123 A003446
• triangulations (2): A004305 A005495 A005497 A005498 A005499 A005500 A005501 A005502 A005503 A005504 A005505 A005506
• triangulations (3): A005507 A005508 A005509 A005979 A006078 A006674 A007815 A011556 A019503 A019504 A027610 A028441
• triangulations (4): A033961 A036572 A036573 A053440
• tribulations game, remoteness numbers: A006019
• tribulations: A006019, A006020
• tricapped prism: A005919, A005920
• trigonometric functions which either increase or decrease monotonically: A004112, A016274, A046946, A046947, A046955, A046956, A046959,
• trinomials over GF(2) , sequences related to :
• trinomials over GF(2), irreducible: A001153 (Mersenne) A002475 A057460 A057461 A057463 A057474 A057476 A057477 A057478 A057479 A057480 A057481 A057482 A057486 A057646 A057774 A073571 A074710 A074743
• trinomials over GF(2), primitive: A001153 (Mersenne), A073726, A073639, A074743, A074744
• triperfect numbers: A005820
• triple factorial numbers: A007661
• triples of relatively prime numbers, sequences related to :
• triples of relatively prime numbers: A071778*, A100448, A100450
• triply perfect numbers: A005820
• trivalent graphs, see graphs, trivalent
• truncatable primes sequences related to :
• truncatable primes (1): A003459 A020994 A023107 A024770 A024785 A050986 A050987 A052023 A052024 A052025 A055521 A060825
• truncatable primes (2): A076586 A076623 A078604 A085248 A085733 A086673 A086697 A094335 A101115 A103443 A103463 A103483
• truncatable primes (3): A125590 A127698 A127889 A127890 A127891 A127892 A129669 A129670 A129671 A129672 A129673 A129692
• truncatable primes (4): A129693 A129940 A129941 A129942 A129943 A129944 A129945 A132394 A133757 A133758 A137812 A144714
• truncated polytopes, sequences related to :
• truncated cube: A005911, A005912
• truncated octahedron: A005910* A038170 A038171 A038180 A038181 A038386 A039741 A057112 A060135
• truncated square numbers: A005892
• truncated tetrahedron: A005905, A005906*, A038168, A038169

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Tu

• Turing machines , sequences related to :
• Turing machines which halt: A004147*
• Turing machines: A052200, A079365
• Turkish: A057435
• Turkish: see also Index entries for sequences related to number of letters in n
• twin primes constant: A065645 (continued fraction), A005597 (decimal expansion), A065646 (denominators of convergents to twin prime constant), A065647 (numerators), A062270, A062271; A065421 (sum of reciprocals of twin primes)
• twin primes, sequences related to :
• two consecutive residues: A000236
• two-way infinite sequences sequences related to :
• two-way infinite sequences (02): ..., -21, 13, -8, 5, -3, 2, -1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, ..., satisfying F(n) = F(n-1) + F(n-2) = -(-1)^n F(-n) for all n. The backwards portion here is the same sequence but with signs, which is quite common, but in general a different sequence is obtained
• two-way infinite sequences (03): The following is a list of two-way infinite sequences. A pair in parentheses indicates that the backwards and forwards sequences are different. This entry is based on communications from Michael Somos
• two-way infinite sequences (04): A000032 A000045 A000096 A000217 A000290 A000292 A000330 A000330 A000447 A001075 A001108 A001109
• two-way infinite sequences (05): A001541 A001570 A001653 A001654 A001687 A001840 A001844 A001871 A001906 A002315 A002492 A002530
• two-way infinite sequences (06): A002620 A003499 A004524 A004525 A005044 A005248 A005686 A005900 A006221 A006368 A006368 A006369
• two-way infinite sequences (07): A006498 A006720 A006721 A006722 A006723 A006723 A006769 A007531 A007598 A007980 A008500 A008616
• two-way infinite sequences (08): A008669 A008805 A011655 A011783 A014125 A014523 A014696 A027468 A028242 A029011 A029153 A029177
• two-way infinite sequences (09): A029341 A030267 A030451 A035007 A039959 A047273 A047588 A048736 A051111 A051263 A054318 A056925
• two-way infinite sequences (10): A058232 A059029 A059502 A060544 A063208 A064268 A065113 A074061 A075839 A077982 A078495 A078529
• two-way infinite sequences (11): A080891 A081555 A082290 A082291 A083039 A083040 A083043 A084964 A089498 A092695 A092886 A093178
• two-way infinite sequences (12): A096386 A099270 A102276 A103221 A105371
• two-way infinite sequences (13): (A000326, A005449) (A000384, A014105) (A001652, A046090) (A002316, A002317) (A002411, A006002) (A003269, A017817)
• two-way infinite sequences (14): (A029578, A065423) (A048739, A077921) (A051792, A053602) (A070893, A082289) (A105426, A144479)
• two-way splittings of integers: A000028, A000379
• twopins positions: A005682 A005683 A005684 A005685 A005686 A005687 A005688 A005689 A005690 A005691

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_U

• U-coordinates for arrays: see T-coordinates for arrays
• ugly numbers: A051037
• Ulam numbers: sequences related to :
• Ulam numbers: A002858* A078425
• Ulam-type sequences: A002858*, A001857, A003664, A007300, A003668, A002859, A003669, A003666, A006844, A003662, A003670, A003667, A003663, A117140
• unary representations: A000042
• unary-binary tree, definition: A029766
• undecagon is spelled 11-gon in the OEIS
• undulating numbers: A033619*
• undulating squares: A016073
• unexplained differences between partition generating functions: A007326, A007327, A007328, A007329, A007330
• unhappy numbers: A031177
• unidecagon is spelled 11-gon in the OEIS
• Unions and sums:: A003430
• unique factorization domains: A003172*
• unit fractions: see Egyptian fractions
• unit interval graphs: see interval graphs
• unitary amicable numbers: A002952*, A002953*
• unitary divisors of n, number of: A034444*
• unitary divisors of n, sum of: A034448*
• unitary divisors: see also (1) A002827 A033854 A033857 A033858 A033859 A034460 A034676 A034677 A034678 A034679 A034680 A034681
• unitary perfect numbers: A002827*
• unitary phi (or unitary totient) function uphi: A047994*
• unpredictable sequence: A007061
• unsolved problems in number theory (selected): :
• unsolved problems in number theory (selected): A000069, A001220, A001969, A002496, A036262, A070087, A070089, A070176, A07019, A144914
• unsolved problems in number theory: see also: sequences that need extending
• untouchable numbers: A005114*
• up-down permutations: A000111*
• urinals: see pay-phones
• urns: A003125, A003126, A003127, A063169, A063170
• usigma(n): A034448*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_V

• vampire numbers: A020342, A014575, A080718, A144563
• vampire numbers: see also A048933 A048934 A048935 A048936 A048937 A048938 A048939
• Van der Pol numbers: A003163*, A003164*
• Van der Waerden numbers: A002886 A005346 A007783 A007784
• Van Lier sequences: A005272
• Vassiliev invariants, sequences related to :
• Vassiliev invariants: A007293, A007473*, A007474, A007478, A007769, A014591, A014595, A014596, A014605, A018192, A018193
• vector fields: A053381
• vers de verres: A151986, A151987
• vertex diagrams: A005416
• vertex operator algebras , sequences related to :
• vertex operator algebras (1): A028511 A028512 A028518 A028519 A028520 A028521 A028522 A028523 A028524 A028525 A028526 A028527
• vertex operator algebras (2): A028528 A028529 A028530 A028531 A028532 A028533 A028534 A028535 A028536 A028537 A028538 A028539
• vertex operator algebras (3): A028540 A028541 A028542 A028543 A028544 A028545 A028546 A028547 A028548 A028549 A028550 A028551
• very rapidly growing sequences: see: sequences which grow too rapidly to have their own entries
• videos, sequences with: A000045 (several videos), A006165, A007306, A007770, A011557, A019590, A035497, A133676, A160559, A160560, A168022, A172984, A180140
• vile numbers: A003159
• Von Staudt-Clausen representation: A000146
• voting schemes: A005254 A005256 A005257 A007009 A007010 A007363 A007364 A018223

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Wa

• walk , sequences related to walks :
• walk, longest, on cube: A005985
• Walks, on b.c.c. lattice, A002903, A001666
• Walks, on cubic lattice, A002902, A000759, A005572, A005573, A002934, A001412, A000760, A000761, A000762, A005570, A005571
• Walks, on diamond lattice, A001395, A001394, A001397, A001396, A001398
• walks, on f.c.c. lattice, see f.c.c. lattice
• Walks, on hexagonal lattice, A003289, A003291, A005550, A005552, A003290, A002933, A001334, A007274, A007275, A005553, A007200, A005549, A005551, A007201, A192208
• Walks, on honeycomb, A001668, A192871
• Walks, on Kagom\'{e} lattice, A001665
• Walks, on Manhattan lattice, A006745, A006744
• Walks, on n-cube, A005985
• Walks, on square lattice:: (1) A002976, A002900, A005566, A006143, A005559, A005558, A005563, A005560, A006144, A173380, A001411, A005561
• Walks, on square lattice:: (2) A005569, A005555, A005562, A005564, A006814, A006815, A006816, A006142, A005567, A005556, A005565, A005557
• Walks, on tetrahedral lattice, A007181, A007180
• walks, on tetrahedron: A001998*, A051436*
• walks, on triangle: A005418*, A051437*
• walks, random: A005021 A005022 A005023 A005024 A005025 A007720 A007829
• Wallis pairs: A072182, A072186, A075768, A075769
• Wallis' number: A007493
• Waring's problem: A002376*, A002377*, A002804*, A079611*, A174406*, A174420

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_We

• Weak Macdonald Conjecture: A005130 A006366
• weakly prime numbers: A050249
• Weber functions: A001663, A001664
• Wedderburn-Etherington numbers: A001190*
• Weierstrass P-function: A002306*/A047817*, A002770
• weigh transform , sequences related to :
• weigh transform: (1) A003602 A005754 A007560 A007561 A018243 A030244 A031148 A032176 A032178 A033461 A035055 A035056
• weigh transform: (2) A035079 A035353 A038001 A038073 A038074 A038075 A038076 A038077 A038079 A038083 A038084 A038085
• weigh transform: (3) A038086 A038087 A050342 A050343 A050344 A055327
• weight distributions of codes , sequences related to :
• weight distributions of codes (1): A001380 A001381 A001382 A001726 A001727 A002289 A002337 A002393 A002394 A002521
• weight distributions of codes (2): A002606 A002617 A006006 A006028 A010031 A010032 A010080 A010081 A010082 A010083
• weight distributions of codes (3): A010084 A010085 A010086 A010087 A010088 A010089 A010090 A010091 A010092 A010093
• weight distributions of codes (4): A010095 A010463 A014487 A014488 A015064 A015065 A015066 A015067 A015068 A015069
• weight distributions of codes (5): A015070 A015071 A018235 A018236 A018237 A018895 A018897 A024881 A028238 A028239
• weight distributions of codes (6): A028240 A028241 A028299 A028381 A028382 A028383 A028384 A028385 A030030 A030061
• weight distributions of codes (7): A030062 A030331 A030639 A030645 A030646 A031136 A031137 A034414
• weight enumerators of codes, see weight distributions of codes
• weight of n, sequences related to :
• weight of n: A000120*
• weird numbers: A006037*, A002975*
• Welsh: see also Index entries for sequences related to number of letters in n
• Weyl group , sequences related to :
• Weyl group W(E7): A005763, A005795, A008583
• Weyl group W(E_7), see Weyl group W(E7)
• Weyl group W(E_8), Molien series for: A008582
• white numbers: A037043, A037044, A037045
• Whitney numbers: A004070*, A007799
• whole numbers: A000027*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Wi

• Width:: A005020, A005019
• Wieferich primes: A001220*, A077816
• wild and pseudo-wild numbers, sequences related to :
• wild and pseudo-wild numbers: A058883*, A058971, A058972, A058973, A058977, A058988, A059175
• Wilson primes: A007540
• Wilson primeth recurrence: A007097*
• Wilson quotients: A007619
• Wilson remainders: A002068
• windmills: see mobiles
• wire, folding a piece of: A001997*, A001998*
• Wirsing constant: A007515 A038517
• witnesses: A006945
• Witt vectors , sequences related to :
• Witt vectors, dimensions: A006973
• Witt vectors, reduced: A006177, A006178, A006179, A006180
• Witt vectors: A006173, A006174, A006175, A006176
• Wolstenholme numbers: A001008, A007406, A007408, A007410
• wonderful Demlo numbers: A002477
• Woodall , sequences related to :
• Woodall numbers n*2^n-1: A003261*
• Woodall primes: see primes, Woodall
• word, Thue-Morse: see Thue-Morse sequences
• Words in certain languages:: A007055, A005819, A007056, A007057, A007058, A051785
• World Geodetic System 1984 Ellipsoid: A125123, A125124, A125125, A125126
• worst cases: A005825 A005826 A005827 A006537 A006538 A006539 A006540
• Wyt queens game: A004481* A004482 A004483 A004484 A004485 A004486 A004487 A047708
• Wythoff , sequences related to :
• Wythoff array: A035513*, A007065, A007066
• Wythoff game (1): A001953 A001954 A001957 A001958 A001959 A001960 A001963 A001964 A001965 A001966 A001967 A001968
• Wythoff game (2): A004481 A018219 A046874 A046875 A046876 A047708
• Wythoff game, 3-pile: A018219*, A018220-A018222, A051261, A077226
• Wythoff sequence, lower ([n*tau]): A000201*
• Wythoff sequence, upper ([n*tau^2]): A001950*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_X

• x in S implies 2x not in S: A050292
• x*ceiling(x), iterating (1): A073524, A073528, A073529, A068119, A001511, A072340, A073341, A075102, A075103, A075120, A075107, A075108
• x*ceiling(x), iterating (2): A023506
• x*floor(x), iterating: A087666, A086336, A087663
• XOR(x,y): A003987*
• XOR, bitwise: A048724, A178729, A048725, A178731, A178732, A178733, A178734, A178735, A178736, A038712, A048726, A065621, A003987, A169810, A070883
• XOR, see also (1): A003815 A003816 A006582 A007462 A033460 A038554 A038712 A038713 A048706 A048833 A050314
• x^2+xy+y^2, of form: A003136*
• x^2+y^2 <= n, sequences related to :
• x^2+y^2 <= n: A000328*, A057655*, A051132, A046109, A046110, A046111, A046112
• x^2+y^2+2z^2, of form: A000401*, A055039, A014455 (number of representations)
• x^4+y^4+z^4 = t^t: A003828*
• x^x, derivative of: A005727*, A005168*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Y

• years, perfect: A061013
• years: see calendar
• Yi Jing: see I Ching yoke-chains: see series-parallel networks
• Young tableaux, sequences related to :
• Young tableaux: A000085 A005700 A005701 A007578 A007579 A007580 A011553 A039622 A039797 A039798 A039917 A047884 A049400

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_Z

• Z-channel, codes for: A010101
• Z2[X]-polynomials: see GF(2)[X]-polynomials, sequences operating on
• zag numbers: A000182*
• Zarankiewicz's problem, sequences related to :
• Zarankiewicz's problem: (1) A001197 A001198 A001840 A001841 A001843 A006613 A006614 A006615 A006616 A006617 A006618 A006619
• Zarankiewicz's problem: (2) A006620 A006621 A006622 A006623 A006624 A006625 A006626
• Zeckendorf expansion, sequences related to :
• Zeckendorf expansion: A035517*, A007895*, A139764, A035614, A107017, A014417
• zero sequence: A000004*
• zero-sum arrays: A002047
• zeros in n!, trailing: A027868
• zeta function, sequences related to :
• zeta function: A002410, A013629, A058303, A065434, A065452, A065453, A072080
• zeta(2): A013661*, A013679*, A002432
• zeta(3): A002117*, A013631*, A006221
• zig numbers: A000364*
• Z^1, theta series of: A000122*
• Z^2 lattice: see square lattice
• Z^4, theta series of: A000118*
• Z^4, walks on: A010575*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_1

• (+1,-1)-matrices: see matrices, binary
• (+1,0,-1)-matrices: see matrices, binary
• (-1)-Sigma(n): see (-1)sigma(n)
• (-1)-sigma(n): see (-1)sigma(n)
• (-1)sigma(n): A049060*
• (-1)Sigma(n): see (-1)sigma(n)
• (-1)^n: A033999*
• (0,1)-matrices: see matrices, binary
• 0,1 then repeat: A000035
• 0^n: A000007
• 1's in binary expansion: A000120*
• 1's sequence: A000012*
• 1-factorizations, sequences related to :
• 1-factorizations: A000438, A000474, A000479, A000528, A055495
• 1/n , sequences related to decimal expansion of :
• 1/n, decimal expansion of: basic sequences: A114205, A114206, A036275, A051626
• 1/n, period of expansion of (in various bases): (1) A007732* A007733 A007734 A007735 A007736 A007737 A007738 A007739 A007740 A051626 A036275 A048962
• 1/n, period of expansion of (in various bases): (2) A048997 A003060
• 1/p (p prime), number of cycles: A006556*, A054471
• 1/p (p prime), period of decimal expansion =(p-1)/k: (1) A006883 A097443 A055628 A056157 A056210 A056211 A056212 A056213 A056214 A056215 A056216
• 1/p (p prime), period of decimal expansion =(p-1)/k: (2) A056217 A098680
• 1/p (p prime), period of decimal expansion of: A002371* A048595* A007138 A048596 A007498 A007615 A040017 A051627 A048963 A006559 A001913 A046107
• 1/p (p prime), sum of: A016088, A046024
• 10*n^2 + 2: A005901*
• 10-gonal numbers: A001107*
• 10-gonal pyramidal numbers: A007585
• 10^n: A011557*
• 11-gonal numbers: A051682
• 11-gonal pyramidal numbers: A007586
• 11-smooth numbers: A051038
• 111...111, primes of form: A004022*, A004023*
• 12-gonal numbers: A051624
• 12-gonal pyramidal numbers: A007587*
• 13-gonal numbers: A051865
• 13-smooth numbers: A080197
• 14-dimensional lattices: A004535, A047632
• 14-gonal numbers: A051866
• 15 puzzle: A087725
• 15-gonal numbers: A051867
• 16-gonal numbers: A051868
• 17-gonal numbers: A051869
• 17-smooth numbers: A080681
• 18-gonal numbers: A051870
• 19-gonal numbers: A051871
• 19-smooth numbers: A080682
• 196, trajectory of: A006960

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_2

• 2 is a 4th power residue mod p: A040098*
• 2 is a cubic residue mod p: A040028*, A014752
• 2 is a square mod p: A001132*
• 2 is an mth power residue mod p: A040159 (m=5), A040992 (m=6), A042966 (m=7), A045315 (m=8), A049596 (m=9), A049542 (m=10) - A049595 (m=63)
• 2-graphs: A002854* A006627* A007830 A007831 A007832 A007833 A007834
• 2-plexes: A003190
• 20-gonal numbers: A051872
• 21-gonal numbers: A051873
• 22-gonal numbers: A051874
• 23-gonal numbers: A051875
• 23-smooth numbers: A080683
• 24-gonal numbers: A051876
• 2^2^n: A001146*
• 2^n + 1, primes dividing: A014657, A014661
• 2^n + 2 is divisible by n: A006517
• 2^n - 1: A000225*
• 2^n/n: A000799, A065482, A053638
• 2^n: A000079*
• 2^n: ends in n: A064541, A064540, A121319, A113627, A109405
• 2^n: last digits of: A007185, A016090, A003226, A035383, A064540, A064541, A121319
• 2^p - 1: A001348*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_3

• 3-almost primes: A014612*, A072114 ("pi"), A109251
• 3-colored: (1) A000685 A006201 A006964 A027710 A029857 A036252 A038050 A038059 A038060 A038061 A038062 A038076
• 3-colored: (2) A038079 A038080 A053762
• 3-connected: (1) A000109 A000944 A002880 A005644 A005645 A006290 A006445 A007083 A007084 A007085 A007100 A047051
• 3-connected: (2) A049337 A052444
• 3-gonal numbers: see triangular numbers A000217
• 3-plexes: A003189, A051240
• 3-polyhedra: A006868
• 3-smooth numbers: A003586
• 3-trees: A000672 A002658 A003035 A003611 A003612 A006894 A007135 A007136 A036362
• 3n - sigma(n): see under n -> 3n - sigma(n)
• 3x+1 problem , sequences related to :
• 3x+1 problem, (01): A000546, A001281, A005186, A006370* (image of n), A006460, A006513, A006577* (steps to reach 1), A006666, A006667, A006877, A006878, A006884
• 3x+1 problem, (02): A006885, A008873, A008874, A008875, A008876, A008877, A008878, A008879, A008880, A008882, A008883, A008884
• 3x+1 problem, (03): A008908, A010120, A016945, A025586, A025587, A033478, A033479, A033480, A033481, A033491, A033492, A033493
• 3x+1 problem, (04): A033494, A033495, A033496, A033958, A033959, A039508, A045474, A045475, A045476, A055509, A055510, A056959
• 3x+1 problem, (05): A060322, A060409, A060410, A060411, A060412, A060413, A060414, A060415, A060445, A060565, A061641, A062052
• 3x+1 problem, (06): A062053, A062054, A062055, A062056, A062057, A062058, A062059, A062060, A064684, A064685, A066756, A066773
• 3x+1 problem, (07): A066861, A069206, A069323, A070165, A070167, A072761, A075677, A078719, A078720, A092892, A092893, A112695
• 3x+1 problem, (08): A116623, A116640, A116641, A128333, A133419, A133420, A133421, A133422, A133423, A133424, A133425, A133426
• 3x+1 problem, (09): A135282, A138750, A138751, A138752, A138753, A138754, A138757, A139391, A139399, A139435, A139436
• 3x+1 problem, (10): A131450
• 3x+1 problem, J. C. Lagarias's 3x+1 Problem Annotated Bibliography
• 3^n: A000244*

(E?)(L1) http://oeis.org/wiki/Index_to_OEIS:_Section_4

• 4-gonal numbers: see squares A000290
• 4^n: A000302*
• 5-ish numbers (all digits 0 or 5): A169964
• 5-smooth numbers: A051037
• 5^n: A000351*
• 6-gonal numbers: see hexagonal numbers A000384
• 6/Pi^2: A059956, A013661
• 6^n: A000400*
• 7-gonal numbers: see heptagonal numbers A000566
• 7-smooth numbers: A002473
• 7^n: A000420*
• 8-gonal numbers: see octagonal numbers A000567
• 8^n: A001018*
• 9-gonal numbers: A001106*, A028991, A028992
• 9-gonal pyramidal numbers: A007584
• 9-ish numbers (decimal expansion contains a 9): A011539
• ? function, see Minkowski's question mark function
• 9-ish numbers: A011539
• 9^n: A001019*

Erstellt: 2012-01

## P

### phrontistery Numerical Prefixes

(E?)(L1) http://phrontistery.info/numbers.html
Adjectives and nouns that reflect numerical values or multiples.
• What do you call a group of eleven musicians?
• An athletic competition with six events?
• An event that recurs every twenty years?
It can be very difficult to figure out what sort of prefix to use, and there are plenty of exceptions to the rules.

In general, these words are made by combining a prefix derived from Latin or Greek number words and a suffix indicating the type or category of the thing being counted. If you know a lot of word etymologies, you can usually figure out whether a word takes a Latin or Greek numerical prefix if you can tell whether the suffix you want to use is Latin or Greek in origin.
However, if you can't work out the etymology, it's probably best to just look at the lists below, which indicate which prefixes are used with which suffixes. Besides, there are exceptions to this general rule.
Latin prefixes (uni, bi, tri ...) are normally used for the following categories.
• mathematical bases "-al"
• groups of musicians "-tet"
• words for multiples of something "-uple"
• number of years between two events "-ennial"
• number of sides of something "-lateral"
• words for large numbers / exponents "-illion"
• less common categories: number of leaflets or petals on a leaf or flower "-foliate", chemical valencies "-valent"; division into parts "-partite" or "-fid".
...
Let's turn to the Greek prefixes (mono, di, tri ...), which are used for the following categories:
• number of sides of plane figures "-gon"
• number of faces of solid figures "-hedron"
• number of angles in a shape or line "-angle"
• number of rulers in a government "-archy"
• number of meters in a poetic verse"-meter"
• number of objects in a group "-ad"
• number of events in an athletic competition "-athlon"
• less common categories: numbers of syllables in words "-syllabic"; sets of books or other works "-logy"; number of fingers "-dactylic"; number of languages spoken "-glot"; number of parts "-merous"; number of columns "-style"; amount of carbon in many chemical molecules "-ane", "-ene", "-yne".
...
• Table 1: Latin-Prefixed Numerical Words
• Table 2: Greek-Prefixed Numerical Words
• Table 3: Latin Numerical Words: 13 to 1000
• Table 4: Greek Numerical Words: 13 to 1000

## R

### random Zufallgenerator

(E?)(L?) http://www.random.org/
Hier kann man Zufallszahlen zwischen -1.000.000.000 und 1.000.000.000 generieren, auch in Hexadecimal, Decimal, Octal, Binary, verschiedene Münzen werfen und Zufalls-Bitmaps von max. 512 mal 512 Pixeln generieren lassen.

What's this fuss about true randomness?
Perhaps you have wondered how predictable machines like computers can generate randomness. In reality, most random numbers used in computer programs are pseudo-random, which means they are a generated in a predictable fashion using a mathematical formula. This is fine for many purposes, but it may not be random in the way you expect if you're used to dice rolls and lottery drawings.

RANDOM.ORG offers true random numbers to anyone on the Internet. The randomness comes from atmospheric noise, which for many purposes is better than the pseudo-random number algorithms typically used in computer programs. People use RANDOM.ORG for holding drawings, lotteries and sweepstakes, to drive games and gambling sites, for scientific applications and for art and music. The service has existed since 1998 and was built and is being operated by Mads Haahr of the School of Computer Science and Statistics at Trinity College, Dublin in Ireland.

Fun & Free:
Coin Flipper | Die Roller | Playing Card Shuffler | Lottery Quick Pick | Keno Quick Pick | Jazz Scale Generator | Bitmap Generator | Sound Generator | Integer Generator | Sequence Generator | String Generator | List Randomizer | Possible Lessnesses | Web Widgets

Background & Stats:
About Randomness | History of RANDOM.ORG | Randomness Quotations | General FAQ | Guide to Random Drawings | Video Guide to Giveaways? | Real-Time Statistics | Statistical Analysis | Your Quota | Testimonials | Media and Citations | Acknowledgements | Newsletter | Disclaimer

Login/Register | Premium Generator | Randomness Trails | Integer Set Generator | Third-Party Draw | Gaussian Generator | Fraction Generator | Clock Time Generator | Calendar Date Generator | Pregenerated Files | Automated Client Guidelines | HTTP API and Client Archive | Banned Hosts

(E?)(L?) http://www.random.org/nform.html
Random Integer Generator (with duplicates, like dice rolls)

(E?)(L?) http://www.random.org/sform.html
Random Sequence Generator (without duplicates, like lottery tickets)

(E?)(L?) http://www.random.org/form.html
Random Byte Generator

(E?)(L?) http://www.random.org/flip.html
Coin Flipper

(E?)(L?) http://www.random.org/xform.html
Random Bitmap Generator

### randomnumbers Randomnumbers Zufallszahlen Quanten-Zufallszahlengenerator

(E6)(L?) http://www.randomnumbers.info/

(E6)(L?) http://www.heise.de/newsticker/meldung/45683
Meine 10 Zufallszahlen zwischen 1 und 10 waren am 18.03.2004: "7 5 3 3 4 5 4 5 9 10".
Neben dem Erzeugen von bis zu 1.000 Zufallszahlen zwischen 1 und 10.000 findet man Informationen What are random numbers?
Generating random numbers

## T

### turbulence.org The secret lives of numbers

(E?)(L?) http://www.turbulence.org/Works/nums/index.html

The authors conducted an exhaustive empirical study, with the aid of custom software, public search engines and powerful statistical techniques, in order to determine the relative popularity of every integer between 0 and one million. The resulting information exhibits an extraordinary variety of patterns which reflect and refract our culture, our minds, and our bodies.

For example, certain numbers, such as 212, 486, 911, 1040, 1492, 1776, 68040, or 90210, occur more frequently than their neighbors because they are used to denominate the phone numbers, tax forms, computer chips, famous dates, or television programs that figure prominently in our culture. Regular periodicities in the data, located at multiples and powers of ten, mirror our cognitive preference for round numbers in our biologically-driven base-10 numbering system. Certain numbers, such as 12345 or 8888, appear to be more popular simply because they are easier to remember.

Humanity's fascination with numbers is ancient and complex. Our present relationship with numbers reveals both a highly developed tool and a highly developed user, working together to measure, create, and predict both ourselves and the world around us. But like every symbiotic couple, the tool we would like to believe is separate from us (and thus objective) is actually an intricate reflection of our thoughts, interests, and capabilities. One intriguing result of this symbiosis is that the numeric system we use to describe patterns, is actually used in a patterned fashion to describe.

We surmise that our dataset is a numeric snaphot of the collective consciousness. Herein we return our analyses to the public in the form of an interactive visualization, whose aim is to provoke awareness of one's own numeric manifestations.

The Secret Life of Numbers by Golan Levin, et. al. (February 2002) is a commission of New Radio and Performing Arts, Inc., for its Turbulence web site. It was made possible with funding from The Greenwall Foundation. Further information here.

Erstellt: 2014-01

## U

### Uni Tennessee Prime-Glossary Primzahlen-Glossar

(E?)(L?) http://primes.utm.edu/
The University of Tennessee at Martin

"The Prime Glossary" is your Internet guide to the terminology of prime numbers. We began this project at The Prime Pages in early 1998 to provide simple, terse definitions of words and names related to prime numbers. When appropriate, the glossary includes links to other pages with fuller definitions and information.

The Largest Known Primes Database, The "Guinness book" of prime number records! Includes the 5000 largest known primes and smaller ones of selected forms (one-page summary) updated daily! What are the Prime pages?

• Prime Links Hundreds of links to other prime resources including history, programs, theory and more!
• Lists of Primes The first 1,000 primes. The first 15,000,000 primes. Top 20 records (e.g., twin primes, Mersenne primes...) Lists of 300 digit primes. And much more!
• Finding primes, proving primality Explains the mathematical theory behind how these record primes are found.
• How many are there? Infinity, but How Big of an Infinity?
• The Largest Known Prime by Year: A Brief History Discusses how big have the largest known primes been historically (and uses that to predict how big they will be)!
More prime resources
• Conjectures and Open Problems
• A short list of conjectures and open problems relating to primes.
• The Riemann Hypothesis
• One of the most important conjectures in prime number theory. When (and if) it is proven, many of the bounds on prime estimates can be improved and primality proving can be simplified.
• Prime Curios!
• "Prime Curios!" is an exciting collection of curiosities, wonders and trivia related to prime numbers.
• Prime Glossary
• Definition of terms related to prime numbers and primality.
• Check a Number's Primality
• A simple routine to check most small numbers for primality.
• Important Discovery: "Primes in P"
• Primality can be tested in deterministic polynomial time--this is of great theoretical value; but of questionable practical value.

(E?)(L?) http://primes.utm.edu/glossary/

## W

### wolframalpha Historical Numerals

(E?)(L1) http://www.wolframalpha.com/examples/PeopleAndHistory.html

Historical Numerals
• convert Roman numerals to standard number notation MDCCLXXVI
• convert a decimal number to Mayan numerals 365 to Mayan

Erstellt: 2011-10

### wolframalpha Number Names

(E?)(L1) http://www.wolframalpha.com/examples/WordsAndLinguistics.html

Number Names
• find the English name of a large number 1,702,465,818
• specify a number by name 1 vigintillion
• specify math problems in words one hundred ninety-six times nineteen

Erstellt: 2011-10

### wolframalpha Numbers

(E?)(L1) http://www.wolframalpha.com/examples/Math.html

Numbers
• compute a decimal approximation of a specified number of digits pi to 1000 digits
• convert a decimal number to another base 219 to binary
Number Theory
• compute a prime factorization factor 70560
• solve a Diophantine equation solve 3x+4y=5 over the integers

Erstellt: 2011-10